Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Biol ; 318(2): 455-62, 2002 Apr 26.
Article in English | MEDLINE | ID: mdl-12051851

ABSTRACT

Cell division in bacteria such as Escherichia coli entails changes in the radii of curvature of the invaginating cytoplasmic membrane which culminate in rearrangements of its monolayers. Division therefore risks perturbing transverse and lateral asymmetries and compromising membrane integrity. This leads us to propose that a strong selective pressure exists for a phospholipid translocator that would transfer phospholipids across the cytoplasmic membrane so as to both demarcate the division site and mediate lipid composition during division. This translocase has an affinity for phospholipids with small headgroups and unsaturated acyl chains which it translocates so as to (1) generate changes in the radius of curvature, (2) facilitate septum formation, (3) minimise bilayer disruption during fusion and (4) prevent septum formation at old or inappropriate division sites. We discuss briefly possible candidates for this translocase including ABC transporters and proteins localised to the division site.


Subject(s)
Bacteria/cytology , Bacteria/metabolism , Carrier Proteins/metabolism , Lipid Bilayers/metabolism , Membrane Proteins/metabolism , Phospholipid Transfer Proteins , Cell Division/physiology , Cell Membrane/metabolism , Escherichia coli/cytology , Escherichia coli/metabolism , Models, Biological
2.
Acta Biotheor ; 50(4): 357-73, 2002.
Article in English | MEDLINE | ID: mdl-12675536

ABSTRACT

New concepts may prove necessary to profit from the avalanche of sequence data on the genome, transcriptome, proteome and interactome and to relate this information to cell physiology. Here, we focus on the concept of large activity-based structures, or hyperstructures, in which a variety of types of molecules are brought together to perform a function. We review the evidence for the existence of hyperstructures responsible for the initiation of DNA replication, the sequestration of newly replicated origins of replication, cell division and for metabolism. The processes responsible for hyperstructure formation include changes in enzyme affinities due to metabolite-induction, lipid-protein affinities, elevated local concentrations of proteins and their binding sites on DNA and RNA, and transertion. Experimental techniques exist that can be used to study hyperstructures and we review some of the ones less familiar to biologists. Finally, we speculate on how a variety of in silico approaches involving cellular automata and multi-agent systems could be combined to develop new concepts in the form of an Integrated cell (I-cell) which would undergo selection for growth and survival in a world of artificial microbiology.


Subject(s)
Bacteria/cytology , Bacteria/genetics , Genes, Bacterial/physiology , Algorithms , Bacteria/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Cycle/physiology , Computer Simulation , DNA Replication , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , Macromolecular Substances , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...