Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 11(12)2019 Dec 07.
Article in English | MEDLINE | ID: mdl-31817828

ABSTRACT

The deregulation of the Wnt/ß-catenin signaling pathway is a central event in colorectal cancer progression, thus a promising target for drug development. Many natural compounds, such as flavonoids, have been described as Wnt/ß-catenin inhibitors and consequently modulate important biological processes like inflammation, redox balance, cancer promotion and progress, as well as cancer cell death. In this context, we identified the chalcone lonchocarpin isolated from Lonchocarpus sericeus as a Wnt/ß-catenin pathway inhibitor, both in vitro and in vivo. Lonchocarpin impairs ß-catenin nuclear localization and also inhibits the constitutively active form of TCF4, dnTCF4-VP16. Xenopus laevis embryology assays suggest that lonchocarpin acts at the transcriptional level. Additionally, we described lonchocarpin inhibitory effects on cell migration and cell proliferation on HCT116, SW480, and DLD-1 colorectal cancer cell lines, without any detectable effects on the non-tumoral intestinal cell line IEC-6. Moreover, lonchocarpin reduces tumor proliferation on the colorectal cancer AOM/DSS mice model. Taken together, our results support lonchocarpin as a novel Wnt/ß-catenin inhibitor compound that impairs colorectal cancer cell growth in vitro and in vivo.

2.
Cells ; 8(9)2019 08 30.
Article in English | MEDLINE | ID: mdl-31480389

ABSTRACT

Combination chemotherapy has been a mainstay in cancer treatment for the last 60 years. Although the mechanisms of action and signaling pathways affected by most treatments with single antineoplastic agents might be relatively well understood, most combinations remain poorly understood. This review presents the most common alterations of signaling pathways in response to cytotoxic and targeted anticancer drug treatments, with a discussion of how the knowledge of signaling pathways might support and orient the development of innovative strategies for anticancer combination therapy. The ultimate goal is to highlight possible strategies of chemotherapy combinations based on the signaling pathways associated with the resistance mechanisms against anticancer drugs to maximize the selective induction of cancer cell death. We consider this review an extensive compilation of updated known information on chemotherapy resistance mechanisms to promote new combination therapies to be to discussed and tested.


Subject(s)
Antineoplastic Agents/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Drug Resistance, Neoplasm , Neoplasms/drug therapy , Signal Transduction/drug effects , Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Humans
3.
Transl Oncol ; 10(5): 726-733, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28734226

ABSTRACT

Esophageal cancer is the sixth most common cause of cancer-related death worldwide. Current chemotherapy regimens include a combination of 5-fluorouracil (5-FU) and cisplatin, but more efficient therapy strategies are needed to increase 5-year survival. Alterations in the signaling pathway of the tumor suppressor gene Rb-1, which encodes a phosphoprotein (pRB) that negatively regulates the G1/S transition of the cell cycle, are present in 70% of all tumors, but its role in esophageal cancer is still unclear. Most of these are alterations leading to up-regulation of the activity of cyclin-dependent kinases (CDKs) to phosphorylate pRB, which suggests that keeping the wild type pRB phosphorylated might be advantageous. Besides proliferation, pRB also regulates apoptosis induced by tumor necrosis factor-alpha (TNF-α) and DNA-damage. We investigated the status of phosphorylation of pRB along esophageal tumorigenesis stages, as well as whether hyperphosphorylation of pRB could suppress apoptosis induced by cisplatin, 5-FU, or TNF-α in esophageal cancer cells. pRB phosphorylation increased progressively from normal esophageal tissue to metaplasia and adenocarcinoma, suggesting that pRB phosphorylation increases along esophageal tumor stages. When RB-1 was knocked down or CDK inhibitors reduced the levels of phosphorylated pRB, opposite apoptotic effects were observed, depending on the combination of drugs tested: whereas TNF-α- and cisplatin-induced apoptosis increased, 5-FU-induced apoptosis decreased. Taken together, these data suggest that pRB plays a role in esophageal adenocarcinoma and that, depending on the type of anti-cancer treatment, combining CDK inhibitors and chemotherapy has the potential to increase the sensitivity of esophageal cancer cells to cell death.

4.
An Acad Bras Cienc ; 88(4): 2257-2275, 2016.
Article in English | MEDLINE | ID: mdl-27991962

ABSTRACT

Physiological processes, as autophagy, proliferation and apoptosis are affected during carcinogenesis. Restoring cellular sensitivity to apoptotic stimuli, such as the antineoplastic cocktails, has been explored as a strategy to eliminate cancer cells. Autophagy, a physiological process of recycling organelles and macromolecules can be deviated from homeostasis to support cancer cells survival, proliferation, escape from apoptosis, and therapy resistance. The relationship between autophagy and apoptosis is complex and many stimuli can induce both processes. Most chemotherapeutic agents induce autophagy and it is not clear whether and how this chemotherapy-induced autophagy might contribute to resistance to apoptosis. Here, we review current strategies to sensitize cancer cells by interfering with autophagy. Moreover, we discuss a new link between autophagy and apoptosis: the tumor suppressor retinoblastoma protein (RB). Inactivation of RB is one of the earliest and more frequent hallmarks of cancer transformation, known to control cell cycle progression and apoptosis. Therefore, understanding RB functions in controlling cell fate is essential for an effective translation of RB status in cancer samples to the clinical outcome.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/physiology , Autophagy/physiology , Retinoblastoma Protein/physiology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...