Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(3)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38591421

ABSTRACT

The aim of this paper is to present methods for corrosion mitigation in molten salt environments. The corrosion of structural materials depends directly on the redox potential of the salt. When the redox potential of the salt is higher than the standard potentials of the elements constituting the structural materials, corrosion occurs. If the reverse is true, no corrosion is observed. Herein, a methodology for calculating the theoretical potential of a molten salt is provided and compared with experimental measurements. Three ways to mitigate corrosion by modifying the salt redox potential are proposed: (i) using a soluble/soluble redox system; (ii) using a potentiostatic method; and (iii) using an amphoteric compound such as UCl3, TiCl2, or TiCl3. Immersion tests were conducted under the above conditions to validate the methodology.

2.
Materials (Basel) ; 16(15)2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37570119

ABSTRACT

Portland cement is extensively used for the conditioning of radioactive waste. However, its high alkalinity is a serious obstacle to the stabilization of waste containing aluminum metal since aluminum is oxidized by the pore solution with the production of dihydrogen. This work investigates the potential of an alternative binder, magnesium potassium phosphate (MKP) cement, for the stabilization of Al-Mg alloys comprising 2 to 4.5 wt% of Mg and other metallic impurities. The objective is to assess the influence of the alloy composition on its reactivity in the cementitious matrix at earlier ages, as well as at later ages, when the cement has reached a significant reaction degree. Two complementary techniques are used. Gas chromatography shows that the dihydrogen release, resulting from the corrosion process, is not influenced by the magnesium content in the alloy. Electrochemical impedance spectroscopy provides qualitative information about the corrosion but also makes it possible to assess the corrosion current using an equivalent electrical circuit linked to the kinetic parameters of the postulated corrosion mechanism. Over a one-year period, the corrosion current of the alloys, regardless of their Mg content, is reduced by almost three orders of magnitude in MKP mortar as compared to Portland-cement-based mortar.

SELECTION OF CITATIONS
SEARCH DETAIL
...