Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 11(19): 17853-17862, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30998311

ABSTRACT

As dynamic cross-linking networks are intrinsically weaker than permanent covalent networks, it is a big challenge to obtain a stiff self-healing polymer using reversible networks. Inspired by the self-healable and mechanically adaptive nature of sea cucumber, we design a water-responsive self-healing polymer system with reversible and permanent covalent networks by cross-linking poly(propylene glycol) with boroxine and epoxy. This double cross-linked structure is self-healing due to the boroxine reversible network as well as showing a room-temperature tensile modulus of 1059 MPa and a tensile stress of 37 MPa, on a par with classic thermosets. The dynamic boroxine bonds provide the self-healing response and enable up to 80% recovery in modulus and tensile strength upon water contact. The system shows superior adhesion to metal substrates by comparison with the commercial epoxy-based structural adhesive. Besides, this system can change modulus from a stiff thermoset to soft rubber (by a factor of 150) upon water stimulus, enabling potential applications of either direct or transform printing for micro/nanofabrication. Moreover, by incorporating conductive nanofillers, it becomes feasible to fabricate self-healing and versatile strain/stress sensors based on a single thermoset, with potential applications in wearable electronics for human healthcare.

2.
RSC Adv ; 8(48): 27119-27130, 2018 Jul 30.
Article in English | MEDLINE | ID: mdl-35540004

ABSTRACT

A novel poly(epsilon-caprolactone) (PCL) supramolecular network exhibiting shape-memory behavior was successfully constructed with pendant UPy units that are highly able to dimerize. The dynamic network was obtained by a simple and versatile strategy consisting of chain-extension reaction between α,ω-dihydroxyoligoPCL and hydroxylated UPy units in the presence of hexamethylene diisocyanate as a coupling agent and further intermolecular dimerization of the UPy along the polyurethane backbone. 1H NMR analyses confirmed the dynamic features of the system, and DMTA in tensile mode was investigated to assess the SMP properties. Recyclability was also assessed by taking advantage of these supramolecular networks. Further addition of cellulose nanocrystals into the polymer network enabled adjustment of the extent of the net-points and therefore the SMP features. As confirmed by dispersion tests in solution and SEM observations, these bio-based nanofillers were homogeneously distributed in the network via supramolecular interaction between the hydroxyl groups present on their surface and UPy moieties along the polyurethane backbone. Thus, the here developed nanomaterials might reveal applicability in areas where a combination of SMP and biocompatibility is needed.

3.
Chemistry ; 23(28): 6730-6735, 2017 May 17.
Article in English | MEDLINE | ID: mdl-28444934

ABSTRACT

Developing intrinsic self-healing polymeric materials is of great interest nowadays to extend material lifetime and/or prevent the replacement of damaged pieces. Spontaneously humidity-sensitive healable polymer network built around dynamic covalent B-O bonds was templated by using iminoboronate-based boroxine derivatives. Taking advantage of the dynamic boroxine/boronic acid equilibrium and iminoboronate chemistry, it is possible to construct polymeric materials able to self-heal without requiring any energy-demanding external activation. Interestingly, this novel family of iminoboronate adduct-based materials can be readily produced by a relatively simple and straightforward synthesis between boronic acid and diamine-based compounds, paving the way to coatings that are self-healable at ambient humidity.

SELECTION OF CITATIONS
SEARCH DETAIL
...