Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Diabetes ; 60(9): 2424-33, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21810601

ABSTRACT

OBJECTIVE: The incretin hormone GIP (glucose-dependent insulinotropic polypeptide) promotes pancreatic ß-cell function by potentiating insulin secretion and ß-cell proliferation. Recently, a combined analysis of several genome-wide association studies (Meta-analysis of Glucose and Insulin-Related Traits Consortium [MAGIC]) showed association to postprandial insulin at the GIP receptor (GIPR) locus. Here we explored mechanisms that could explain the protective effects of GIP on islet function. RESEARCH DESIGN AND METHODS: Associations of GIPR rs10423928 with metabolic and anthropometric phenotypes in both nondiabetic (N = 53,730) and type 2 diabetic individuals (N = 2,731) were explored by combining data from 11 studies. Insulin secretion was measured both in vivo in nondiabetic subjects and in vitro in islets from cadaver donors. Insulin secretion was also measured in response to exogenous GIP. The in vitro measurements included protein and gene expression as well as measurements of ß-cell viability and proliferation. RESULTS: The A allele of GIPR rs10423928 was associated with impaired glucose- and GIP-stimulated insulin secretion and a decrease in BMI, lean body mass, and waist circumference. The decrease in BMI almost completely neutralized the effect of impaired insulin secretion on risk of type 2 diabetes. Expression of GIPR mRNA was decreased in human islets from carriers of the A allele or patients with type 2 diabetes. GIP stimulated osteopontin (OPN) mRNA and protein expression. OPN expression was lower in carriers of the A allele. Both GIP and OPN prevented cytokine-induced reduction in cell viability (apoptosis). In addition, OPN stimulated cell proliferation in insulin-secreting cells. CONCLUSIONS: These findings support ß-cell proliferative and antiapoptotic roles for GIP in addition to its action as an incretin hormone. Identification of a link between GIP and OPN may shed new light on the role of GIP in preservation of functional ß-cell mass in humans.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Gastric Inhibitory Polypeptide/genetics , Islets of Langerhans/metabolism , Osteopontin/genetics , Alleles , Gastric Inhibitory Polypeptide/metabolism , Gastric Inhibitory Polypeptide/pharmacology , Genome-Wide Association Study , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide 1/pharmacology , Humans , Insulin/metabolism , Insulin Secretion , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Islets of Langerhans/drug effects , Male , Osteopontin/metabolism
2.
Metabolism ; 51(9): 1111-9, 2002 Sep.
Article in English | MEDLINE | ID: mdl-12200754

ABSTRACT

This study sought to examine whether enhanced hepatic sensitivity to glucagon contributes to impaired glucose homeostasis in subjects with type 2 diabetes mellitus (T2DM). Eight T2DM and 9 age-, weight-, and gender-matched nondiabetic subjects received a 4-hour glucagon infusion at the rates of 0.2, 0.5, 2, 6, and 8 ng. kg(-1). min(-1) while maintaining the plasma insulin concentration constant at the basal level with exogenous infusions of somatostatin and insulin. On the evening prior to study, diabetic subjects received a low-dose insulin infusion at a rate designed to maintain euglycemia and this infusion rate was continued until the end of the glucagon infusion study on the following day. Each glucagon infusion study was performed on a separate day and in random order. 3-(3)H-glucose was infused in all studies to measure endogenous glucose production (EGP) and the rate of whole body glucose disposal. During the first 2 hours (0 to 120 minutes) of glucagon infusion, EGP increased sharply in both groups, and the initial rate of rise in EGP was higher in control versus diabetic subjects. During the last 2 hours (120 to 240 minutes) of glucagon infusion, EGP in the diabetics tended to be higher than controls during the 3 lower glucagon infusion rates and this difference reached statistical significance (P <.05 to.01) during the 6 and 8 ng. kg(-1). min(-1) infusions. During the 2 hours following cessation of glucagon (240- to 360-minute time period), the stimulation of glucose disappearance from plasma was impaired (P <.05) during all 5 glucagon infusion rates in the diabetics compared to controls. We conclude that in T2DM patients, the initial (0 to 120 minutes) stimulation of hepatic glucose output (which primarily reflects glycogenolysis) by glucagon is not enhanced in T2DM patients. The late (120 to 240 minutes) stimulation of hepatic glucose output (which primarily reflects gluconeogenesis) by glucagon tends to be increased, especially at supraphysiologic plasma glucagon concentrations.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Glucagon/administration & dosage , Glucose/metabolism , Liver/drug effects , Liver/metabolism , Dose-Response Relationship, Drug , Fatty Acids, Nonesterified/blood , Female , Glucagon/pharmacology , Hormones/blood , Humans , Lactic Acid/blood , Male , Middle Aged , Osmolar Concentration , Reference Values , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...