Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res ; 81(20): 5230-5241, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34462276

ABSTRACT

Metastatic melanoma is challenging to clinically address. Although standard-of-care targeted therapy has high response rates in patients with BRAF-mutant melanoma, therapy relapse occurs in most cases. Intrinsically resistant melanoma cells drive therapy resistance and display molecular and biologic properties akin to neural crest-like stem cells (NCLSC) including high invasiveness, plasticity, and self-renewal capacity. The shared transcriptional programs and vulnerabilities between NCLSCs and cancer cells remains poorly understood. Here, we identify a developmental LPAR1-axis critical for NCLSC viability and melanoma cell survival. LPAR1 activity increased during progression and following acquisition of therapeutic resistance. Notably, genetic inhibition of LPAR1 potentiated BRAFi ± MEKi efficacy and ablated melanoma migration and invasion. Our data define LPAR1 as a new therapeutic target in melanoma and highlights the promise of dissecting stem cell-like pathways hijacked by tumor cells. SIGNIFICANCE: This study identifies an LPAR1-axis critical for melanoma invasion and intrinsic/acquired therapy resistance.


Subject(s)
Biomarkers, Tumor/metabolism , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Melanoma/pathology , Neural Crest/pathology , Neural Stem Cells/pathology , Receptors, Lysophosphatidic Acid/metabolism , Animals , Antineoplastic Agents/pharmacology , Apoptosis , Biomarkers, Tumor/genetics , Cell Proliferation , Humans , Melanoma/drug therapy , Melanoma/genetics , Melanoma/metabolism , Mice , Mice, Inbred NOD , Mice, SCID , Neural Crest/drug effects , Neural Crest/metabolism , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Prognosis , Receptors, Lysophosphatidic Acid/genetics , Transcriptome , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...