Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 11: 67, 2020.
Article in English | MEDLINE | ID: mdl-32133016

ABSTRACT

Phytoliths are silica bodies formed in living plant tissues. Once deposited in soils through plant debris, they can readily dissolve and then increase the fluxes of silicon (Si) toward plants and/or watersheds. These fluxes enhance Si ecological services in agricultural and marine ecosystems through their impact on plant health and carbon fixation by diatoms, respectively. Fertilization increases crop biomass through the supply of plant nutrients, and thus may enhance Si accumulation in plant biomass. Si and phosphorus (P) fertilization enhance rice crop biomass, but their combined impact on Si accumulation in plants is poorly known. Here, we study the impact of combined Si-P fertilization on the production of phytoliths in rice plants. The combination of the respective supplies of 0.52 g Si kg-1 and 0.20 g P kg-1 generated the largest increase in plant shoot biomass (leaf, flag leaf, stem, and sheath), resulting in a 1.3-fold increase compared the control group. Applying combined Si-P fertilizer did not affect the content of organic carbon (OC) in phytoliths. However, it increased plant available Si in soil, plant phytolith content and its total stock (mg phytolith pot-1) in dry plant matter, leading to the increase of the total amount of OC within plants. In addition, P supply increased rice biomass and grain yield. Through these positive effects, combined Si-P fertilization may thus address agronomic (e.g., sustainable ecosystem development) and environmental (e.g., climate change) issues through the increase in crop yield and phytolith production as well as the promotion of Si ecological services and OC accumulation within phytoliths.

2.
Front Plant Sci ; 9: 1977, 2018.
Article in English | MEDLINE | ID: mdl-30687370

ABSTRACT

This work aimed to test the hypothesis that the combination of arbuscular mycorrhizal fungi (AMF) and accumulation of silicon (Si) in banana plants via its uptake and transport by the fungus reduces the incidence of Black Leaf Steak Disease (BLSD) caused by Pseudocercospora fijiensis. Methods: A pot experiment was conducted to compare BLSD symptoms on leaves of banana plants colonized or not by the AMF Rhizophagus irregularis MUCL 41833 and exposed or not to Si added to the growth substrate. Results: A marked increase in plant growth parameters (i.e., pseudostem diameter and height, leaf surface area, shoot, root and total dry weight) as well as accumulation of Si, P, and Ca were noticed in the AMF-colonized banana plants in presence as well as in absence of Si added to the growth substrate. Similarly Si addition to the substrate increased plant growth parameters. Leave symptoms caused by the pathogen were observed in all the treatments but were reduced in presence of AMF as well as in presence of Si added to the growth substrate. The more drastic reduction was noticed in the AMF-colonized plants with Si added to the growth substrate. The Severity Index as well as Area Under Disease Progress Curve were considerably decreased both at 21 (∼48% and 48%, respectively) and 35 days (∼21% and ∼32%, respectively) after inoculation of the pathogen as compared with non-AMF-colonized plants in absence of Si added to the substrate. Conclusion: Our findings revealed that AMF-colonized banana plants grown in a subs-trate supplemented with Si were less impacted by P. fijiensis than non-colonized plants grown without Si added to the growth substrate. The combination of AMF-colonized banana plants (during the weaning phase or in vitro) with the application of Si to soil seems thus a thoughtful option to mitigate the impact of BLSD in bananas, although such strategy needs first to be evaluated under field conditions to appraise its real potential.

3.
J Environ Radioact ; 104: 87-93, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21963466

ABSTRACT

The extent of radiocaesium retention in soil is important to quantify the risk of further foodchain contamination. The Radiocaesium Interception Potential (RIP -Cremers et al., 1988, Nature 335, 247-249) is an intrinsic soil parameter which can be used to categorize soils or minerals in terms of their capacity to selectively adsorb radiocaesium. In this study, we measured RIP for a large soil collection (88 soil samples) representative of major FAO soil reference groups on a worldwide scale and tested the possibility to predict the RIP on the basis of other easily accessible or measurable soil data. We also compared RIP values with those obtained from separate chemical extraction experiments. The range of measured RIP values (1.8-13300 mmol kg(-1)) was shown to include nearly all possible cases of agricultural soil contamination. Only Podzols, Andosols and Ferralsols were clearly characterized by a very low RIP (<2000 mmol kg(-1)). On a worldwide scale, RIP was in fact slightly related to soil reference type or other simple major physicochemical parameters such as clay percentage or organic matter. Conversely our results indicated a link between the RIP and radiocaesium extractability across very different soils. We showed that, with the proposed scale of RIP values, a simple acid extraction method can provide an operational result highly predictive of potential RIP despite very contrasting soil properties. The RIP could be estimated from the empirical equation: RIP = (-31.701 ∗ log(AER) + 58.886)(2) where AER is the fraction of acid-extractable radiocaesium.


Subject(s)
Cesium Radioisotopes/analysis , Plants, Edible/metabolism , Soil Pollutants, Radioactive/analysis , Soil/chemistry , Aluminum Silicates/analysis , Aluminum Silicates/isolation & purification , Aluminum Silicates/toxicity , Cesium Radioisotopes/isolation & purification , Cesium Radioisotopes/toxicity , Clay , Hydrochloric Acid/chemistry , Hydrogen-Ion Concentration , Organic Chemicals/analysis , Organic Chemicals/isolation & purification , Organic Chemicals/toxicity , Plants, Edible/growth & development , Plants, Edible/radiation effects , Risk Assessment , Sodium Acetate/chemistry , Soil Pollutants, Radioactive/isolation & purification , Soil Pollutants, Radioactive/toxicity , Solid Phase Extraction/methods , Solvents/chemistry
4.
J Environ Manage ; 85(1): 129-36, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17029757

ABSTRACT

Twenty years after the Chernobyl accident, root uptake from the surface layers of contaminated forest soils plays a major role in radiocaesium ((137)Cs) transfer to the trees and accumulation in perennial compartments, including stemwood. Trustworthy long-term predictions (modelling) of stemwood contamination with (137)Cs should accordingly be based on a reliable picture of this source-sink relationship. Considering the complexity of the processes involved in (137)Cs cycling in forest stands, elementary ratios like transfer factors (TF) were shown to be not very relevant for that purpose. At the tree level, alternatives like the wood immobilisation potential (WIP) have therefore been proposed in order to quantify the current net (137)Cs accumulation in stemwood. Our objective was here to compare WIP values determined for a series of contaminated forest stands in Belarus with the corresponding pools of (137)Cs available in the soil for root uptake. The comparison reveals that both indices are quite proportional, whatever the forest ecosystem features. This corroborates the relevancy of WIP as an indicator of the current (137)Cs root uptake by the trees, which could accordingly help to improve the existing models of (137)Cs cycling and the long-term management of contaminated forest ecosystems.


Subject(s)
Cesium Radioisotopes/metabolism , Pinus sylvestris/metabolism , Soil Pollutants, Radioactive/metabolism , Wood/metabolism , Chernobyl Nuclear Accident , Environmental Monitoring/methods , Plant Roots/metabolism , Plant Stems/metabolism , Republic of Belarus , Trees
5.
Environ Microbiol ; 8(11): 1926-34, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17014492

ABSTRACT

The capacity of arbuscular mycorrhizal (AM) fungi to take up and translocate radiocaesium (Cs) to their host has been shown using the root-organ culture (ROC) system. However, the absence of photosynthetic tissues, lack of a normal root hormonal balance and incomplete source-sink relationships may bias the bidirectional transfer of elements at the symbiotic interface and complicate transport studies. Accordingly, we developed a novel culture system [i.e. the Arbuscular Mycorrhizal-Plant (AM-P) in vitro culture system], where AM fungi and an autotrophic host plant develop under strict in vitro conditions. With this system, we unambiguously demonstrated the capacity of AM fungi to transport Cs. The extraradical fungal hyphae took up 21.0% of the initial supply of 134Cs. Translocation to the plant represented 83.6% of the 134Cs taken up. Distribution of 134Cs in the host plant was 89.8% in the mycorrhizal roots and 10.2% in the shoot. These results confirm that AM fungi can take up, translocate and accumulate Cs. They further demonstrate unambiguously and for the first time that Cs can be transferred from AM fungi to host tissues. These results suggest a potential involvement of AM fungi in Cs biogeochemical cycle and in plant Cs accumulation.


Subject(s)
Cesium Radioisotopes/metabolism , Medicago truncatula/metabolism , Medicago truncatula/microbiology , Mycorrhizae/metabolism , Biological Transport , Ecosystem , Hyphae/growth & development , Hyphae/metabolism , Medicago truncatula/growth & development , Mycelium/growth & development , Mycelium/metabolism , Mycorrhizae/growth & development , Phosphorus/metabolism
6.
J Environ Qual ; 34(6): 2174-80, 2005.
Article in English | MEDLINE | ID: mdl-16275718

ABSTRACT

Acute K depletion in the rhizosphere can lead to increased root uptake of radiocesium. Two processes can govern this increase: the very low uptake of potassium and the weathering of Cs-fixing clay minerals. Their respective importance is, however, unknown. We investigated the effects of these processes on radiocesium mobilization by roots of willow (Salix viminalis L.) from three micas: muscovite, biotite, and phlogopite. Willows were grown in a mixed quartz-mica substrate with the three respective (134)Cs-contaminated micas as sole sources of potassium and radiocesium. After 7 wk of plant growth, the micas were partially weathered. The degree of mica weathering and the prevalent potassium concentration in the solution increased in the order muscovite (5-11 microM K) < biotite (25-32 microM K) < phlogopite (25-35 microM K). The mobilization and root uptake of radiocesium were negligible with muscovite but increased in the same order. These results show that mica weathering directly and chiefly governs the mobility of radiocesium in K-depleted rhizosphere soil. The low mobility of trace Cs in the muscovite rhizosphere is linked with the dioctahedral character of this mica, and hence to its very low alterability.


Subject(s)
Cesium Radioisotopes/pharmacokinetics , Minerals/metabolism , Mycorrhizae/metabolism , Salix/metabolism , Salix/microbiology , Potassium/metabolism
7.
Environ Pollut ; 134(3): 515-24, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15620597

ABSTRACT

Because mycorrhizal fungi are intimately associated with plant roots, their importance in radionuclide (RN) recycling and subsequent dispersion into the biosphere has received an increasing interest. Recently, the capacity of arbuscular mycorrhizal fungi to take up and translocate radiocaesium to their host was demonstrated. However, the relative contribution of these processes in comparison to the ones of roots remains unknown. Here, the respective contributions of the hyphae of a Glomus species and the transformed carrot (Daucus carota L.) roots on radiocaesium uptake and translocation were compared and quantified. We observed that radiocaesium uptake by hyphae was significantly lower as compared to that of the roots, while the opposite was noted for radiocaesium translocation/uptake ratio. We also observed that the intraradical fungal structures might induce a local accumulation of radiocaesium and concurrently reduce its translocation within mycorrhizal roots. We believe that intraradical fungal structures might induce the down-regulation of radiocaesium channels involved in the transport processes of radiocaesium towards the xylem.


Subject(s)
Cesium Radioisotopes/pharmacokinetics , Daucus carota/metabolism , Mycorrhizae/metabolism , Soil Pollutants, Radioactive/metabolism , Biodegradation, Environmental , Biological Transport , Daucus carota/chemistry , Daucus carota/microbiology , Mycorrhizae/chemistry , Plant Roots/metabolism
8.
Environ Pollut ; 126(3): 445-57, 2003.
Article in English | MEDLINE | ID: mdl-12963308

ABSTRACT

The continuous emissions of SO(2), HCl and HF by Masaya volcano, Nicaragua, represent a substantial source of atmospheric S-, Cl- and F-containing acid inputs for local ecosystems. We report on the effects of such acid depositions on the sulfate, chloride and fluoride contents in soils (0-40 cm) from two distinct transects located downwind from the volcano. The first transect corresponds to relatively undifferentiated Vitric Andosols, and the second transect to more weathered Eutric Andosols. These soils are exposed to various rates of volcanogenic acid addition, with the Vitric sites being generally more affected. Prolonged acid inputs have led to a general pH decrease and reduced exchangeable base cation concentrations in the Andosols. The concentrations of 0.5 M NH(4)F- and 0.016 M KH(2)PO(4)-extractable sulfate (NH(4)F-S and KH(2)PO(4)-S, respectively) indicate that volcanic S addition has increased the inorganic sulfate content of the Vitric and Eutric soils at all depths. In this process, the rate of sulfate accumulation is also dependent on soil allophane contents. For all soils, NH(4)F extracted systematically more (up to 40 times) sulfate than KH(2)PO(4). This difference suggests sulfate incorporation into an aluminum hydroxy sulfate phase, whose contribution to total inorganic sulfate in the Vitric and Eutric Andosols is estimated from approximately 34 to 95% and approximately 65 to 98%, respectively. The distribution of KH(2)PO(4)-extractable chloride in the Vitric and Eutric Andosols exposed to volcanic Cl inputs reveals that added chloride readily migrates through the soil profiles. In contrast, reaction of fluoride with Al and Fe oxyhydroxides and allophanes is an important sink mechanism in the Masaya Andosols exposed to airborne volcanic F. Fluoride dominates the anion distribution in all soil horizons, although F is the least concentrated element in the volcanic emissions and depositions. The soil anion distribution reflects preferential retention of fluoride over sulfate and chloride, and of sulfate over chloride. The primary acidifying agent of the Andosols subject to the volcanic acid inputs is HCl.


Subject(s)
Environmental Pollution , Volcanic Eruptions , Anions/analysis , Chlorides/analysis , Fluorides/analysis , Geologic Sediments/chemistry , Hydrogen-Ion Concentration , Nicaragua , Soil Pollutants/analysis , Sulfates/analysis
9.
Environ Microbiol ; 5(6): 510-6, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12755718

ABSTRACT

Radiocaesium enters the food chain when plants absorb it from soil, in a process that is strongly dependent on soil properties and plant and microbial species. Among the microbial species, arbuscular mycorrhizal (AM) fungi are obligate symbionts that colonize the root cortex of many plants and develop an extraradical mycelial (ERM) network that ramifies in the soil. Despite the well-known involvement of this ERM network in mineral nutrition and uptake of some heavy metals, only limited data are available on its role in radiocaesium transport in plants. We used root-organ culture to demonstrate that the ERM of the AM fungus Glomus lamellosum can take up, possibly accumulate and unambiguously translocate radiocaesium from a 137Cs-labelled synthetic root-free compartment to a root compartment and within the roots. The accumulation of 137Cs by hyphae in the root-free compartment may be explained by sequestration in the hyphae or by a bottleneck effect resulting from a limited number of hyphae crossing the partition between the two compartments. Uptake and translocation resulted from the incorporation of 137Cs into the fungal hyphae, as no 137Cs was detected in mycorrhizal roots treated with formaldehyde. The importance of the translocation process was indicated by the correlation between 137Cs measured in the roots and the total hyphal length connecting the roots with the labelled compartment. 137Cs may be translocated via a tubular vacuolar system or by cytoplasmic streaming per se.


Subject(s)
Cesium Radioisotopes/metabolism , Fungi/metabolism , Mycelium/metabolism , Mycorrhizae/metabolism , Plant Roots/metabolism , Biological Transport , Culture Techniques , Fungi/cytology , Plant Roots/cytology , Symbiosis
10.
J Environ Radioact ; 58(2-3): 175-90, 2002.
Article in English | MEDLINE | ID: mdl-11814165

ABSTRACT

Here we review some of the main processes and key parameters affecting the mobility of radiocesium in soils of semi-natural areas. We further illustrate them in a collection of soil surface horizons which largely differ in their organic matter contents. In soils, specific retention of radiocesium occurs in a very small number of sorbing sites, which are the frayed edge sites (FES) born out of weathered micaceous minerals. The FES abundance directly governs the mobility of trace Cs in the rhizosphere and thus its transfer from soil to plant. Here, we show that the accumulation of organic matter in topsoils can exert a dilution of FES-bearing minerals in the thick humus of some forest soils. Consequently, such accumulation significantly contributes to increasing 137Cs soil-to-plant transfer. Potassium depletion and extensive exploration of the organic horizons by plant roots can further enhance the contamination hazard. As humus thickness depends on both ecological conditions and forest management. our observations support the following ideas: (1) forest ecosystems can be classified according to their sensitivity to radiocesium bio-recycling, (2) specific forest management could be searched to decrease such bio-recycling.


Subject(s)
Cesium Radioisotopes/pharmacokinetics , Ecosystem , Soil Pollutants, Radioactive/pharmacokinetics , Trees , Biological Availability , Cesium Radioisotopes/metabolism , Organic Chemicals , Plant Roots/physiology , Potassium/chemistry , Soil , Soil Pollutants, Radioactive/metabolism
11.
New Phytol ; 156(2): 275-281, 2002 Nov.
Article in English | MEDLINE | ID: mdl-33873284

ABSTRACT

• Uranium (U) uptake and translocation by the arbuscular mycorrhizal (AM) fungus Glomus intraradices were studied under root-organ culture conditions with Agrobacterium rhizogenes -transformed carrot ( Daucus carota ) roots as host. • Two-compartment Petri plates were used to spatially separate a root compartment (RC) and a hyphal compartment (HC); root growth was restricted to the RC while extraradical hyphae grew in both RC and HC. The HC was labelled with 0.1 µM 233 U at different pH conditions. At the end of the experiment, U was measured in the RC and in the HC. • The U absorption by the AM fungus was observed. It included; U uptake by the mycelium developing in the HC, and U translocation from the HC to the RC. The magnitude of this uptake and translocation was highly influenced by the pH of the growth medium, while translocation was highly correlated with the number of hyphae crossing the partition separating the two compartments. • These results are the first to show that an AM fungus can take up and translocate U towards roots.

SELECTION OF CITATIONS
SEARCH DETAIL
...