Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Environ Interact ; 5(3): e10144, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38784123

ABSTRACT

In the tropics, more precisely in equatorial dense rainforest, xylogenesis is driven by a little distinct climatological seasonality, and many tropical trees do not show clear growth rings. This makes retrospective analyses and modeling of future tree performance difficult. This research investigates the presence, the distinctness, and the periodicity of growth ring for dominant tree species in two semi-deciduous rainforests, which contrast in terms of precipitation dynamics. Eighteen tree species common to both forests were investigated. We used the cambial marking technique and then verified the presence and periodicity of growth-ring boundaries in the wood produced between pinning and collection by microscopic and macroscopic observation. The study showed that all eighteen species can form visible growth rings in both sites. However, the periodicity of ring formation varied significantly within and between species, and within sites. Trees from the site with clearly defined dry season had a higher likelihood to form periodical growth rings compared to those from the site where rainfall seasonality is less pronounced. The distinctness of the formed rings however did not show a site dependency. Periodical growth-ring formation was more likely in fast-growing trees. Furthermore, improvements can be made by a detailed study of the cambial activity through microcores taken at high temporal resolution, to get insight on the phenology of the lateral meristem.

3.
Sci Rep ; 5: 7732, 2015 Jan 13.
Article in English | MEDLINE | ID: mdl-25583031

ABSTRACT

Despite increasing recognition of the relevance of biological cycling for Si cycling in ecosystems and for Si export from soils to fluvial systems, effects of human cultivation on the Si cycle are still relatively understudied. Here we examined stable Si isotope (δ(30)Si) signatures in soil water samples across a temperate land use gradient. We show that - independent of geological and climatological variation - there is a depletion in light isotopes in soil water of intensive croplands and managed grasslands relative to native forests. Furthermore, our data suggest a divergence in δ(30)Si signatures along the land use change gradient, highlighting the imprint of vegetation cover, human cultivation and intensity of disturbance on δ(30)Si patterns, on top of more conventionally acknowledged drivers (i.e. mineralogy and climate).


Subject(s)
Agriculture/methods , Ecosystem , Silicon/metabolism , Isotopes , Plants/metabolism , Soil/chemistry , Water , Weather
SELECTION OF CITATIONS
SEARCH DETAIL
...