Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 13(6)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38592872

ABSTRACT

The change in land use in the Brazilian Cerrado modifies the dynamics of soil organic matter (SOM) and, consequently, carbon (C) stocks and their fractions and soil enzyme activities. This study evaluated the effect of brachiaria (Brachiaria decumbens Stapf.) intercropped with Arabica coffee (Coffea arabica L.) on the stock and fractions of soil carbon and enzyme activities. The experiment was arranged in a completely randomized block design with three replications and treatments in a factorial design. The first factor consisted of coffee with or without intercropped brachiaria, the second of Arabica coffee cultivars ('I.P.R.103' and 'I.P.R.99') and the third factor of the point of soil sampling (under the canopy (UC) and in inter-rows (I)). Soil was sampled in layers of 0-10, 10-20, 20-30, 30-40, 40-60 and 60-80 cm. Soil from the 0-10 cm layer was also used to analyze enzymatic activity. Significant effects of coffee intercropped with brachiaria were confirmed for particulate organic carbon (POC), with highest contents in the 0-10 and 20-30 cm layers (9.62 and 6.48 g kg-1, respectively), and for soil enzymes (280.83 and 180.3 µg p-nitrophenol g-1 for arylsulfatase and ß-glucosidase, respectively).

2.
Environ Res ; 205: 112513, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34902382

ABSTRACT

Mercury (Hg) is a persistent environmental pollutant of global concern. Recognized anthropic contributions to environmental Hg pollution include fuel fossil emissions, soil erosion, and industrial and mining activities. Environmental Hg that enters water bodies can be methylated before entering the food chain and contaminating man and wildlife. We used a kriging approach for sampling and X-ray crystallography to study the pressure of road-traffic Hg emissions on soil Hg concentrations in an ecological reserve (ESECAE) in Central Brazil' savannah. We took samples of organic (n = 144) and mineral (n = 144) layers from the road-side and from the undisturbed soils at 0.1, 1, and 2 km from traffic, inside the ESECAE. Overall, total mercury (THg) concentrations determined by atomic absorption spectrophotometry were significantly higher in the organic layer than in the mineral layer. The mean soil THg in the organic and mineral layers was highest at the roadside (respectively 19.77 ± 12.01 and 16.18 ± 11.54 µg g-1), gradually decreasing with the distance from the road. At 2 km, the mean soil THg was 0.09 ± 0.30 and 0.029 ± 0.03 µg g-1, respectively, for the organic and mineral layers. X-ray crystallography showed mineralogical similarity of the sampled soils, indicating Hg externality, i.e, it did not originate from existing soil minerals. Co-kriging analysis (n = 288) confirmed Hg hotspots on the roadsides and a faster mobilization occurring up to a distance of 1 km for both layers. The soil reception and retention of traffic Hg emissions are mainly in the organic layer and can impact subsoil and adjacent areas. Thus, traffic soil-Hg pollution is limited to the road proximities; THg concentrations are high up to 100 m with an inflection point at 1 km.


Subject(s)
Mercury , Soil Pollutants , Environmental Monitoring , Humans , Mercury/analysis , Mining , Soil/chemistry , Soil Pollutants/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...