Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Pharmacol ; 59(1): 24-9, 2001 Jan.
Article in English | MEDLINE | ID: mdl-11125020

ABSTRACT

It is established that agmatine, an endogenously formed decarboxylated arginine, is a weak competitive inhibitor of neuronal nitric-oxide synthase (nNOS) with an apparent Ki value of 660 microM [Biochem J 316:247-249, 1996]. Although agmatine is known to bind to alpha-adrenergic and imidazoline receptors, it has been suggested that some of the pharmacological actions of agmatine, such as the prevention of morphine tolerance, may be due to the inhibition of nNOS. In the current study, we have discovered that agmatine, at concentrations much lower than the reported Ki value, leads to a time-, concentration-, NADPH-, and calmodulin-dependent irreversible inactivation of nNOS. The kinetics of inactivation could be described by an apparent dissociation constant for the initial reversible complex (Ki) and a pseudo first-order inactivation constant (k(inact)) of 29 microM and 0.01 min(-1), respectively. As determined by high-performance liquid chromatography analysis, the mechanism of inactivation involves alteration of the prosthetic heme moiety of nNOS, in part to protein-bound products. Moreover, we discovered that agmatine causes a 3-fold increase in the NADPH oxidase activity of nNOS leading to the production of H2O2 and is a likely cause for the inactivation of the enzyme. Both the inactivation of nNOS and the oxidative stress produced should now be considered in the pharmacological actions of agmatine as well as provide insight into the potential biological effects of endogenously formed agmatine.


Subject(s)
Agmatine/pharmacology , NADPH Oxidases/metabolism , Nitric Oxide Synthase/antagonists & inhibitors , Animals , Cells, Cultured , Enzyme Activation , Heme/metabolism , Hydrogen Peroxide/pharmacology , Insecta , Nitric Oxide Synthase/metabolism , Nitric Oxide Synthase Type I , Oxidation-Reduction/drug effects
2.
J Biol Chem ; 275(18): 13370-6, 2000 May 05.
Article in English | MEDLINE | ID: mdl-10788446

ABSTRACT

It is established that aminoguanidine (AG) is a metabolism-based inactivator of the three major isoforms of nitric-oxide synthase. AG is thought to be of potential use in diseases, such as diabetes, where pathological overproduction of NO is implicated. We show here that during the inactivation of neuronal nitric-oxide synthase (nNOS) by AG that the prosthetic heme is altered, in part, to dissociable and protein-bound adducts. The protein-bound heme adduct is the result of cross-linking of the heme to residues in the oxygenase domain of nNOS. The dissociable heme product is unstable and reverts back to heme upon isolation. The alteration of the heme is concomitant with the loss in the ability to form the ferrous-CO complex of nNOS and accounts for at least two-thirds of the activity loss. Studies with [(14)C]AG indicate that alteration of the protein, in part on the reductase domain of nNOS, also occurs but at low levels. Thus, heme alteration appears to be the major cause of nNOS inactivation. The elucidation of the mechanism of inactivation of nNOS will likely lead to a better understanding of the in vivo effects of NOS inhibitors such as AG.


Subject(s)
Enzyme Inhibitors/pharmacology , Guanidines/pharmacology , Nitric Oxide Synthase/metabolism , Animals , Cell Line , Chromatography, High Pressure Liquid , Enzyme Activation/drug effects , Nerve Tissue Proteins/metabolism , Nitric Oxide Synthase Type I
3.
J Biol Chem ; 275(23): 17407-11, 2000 Jun 09.
Article in English | MEDLINE | ID: mdl-10751385

ABSTRACT

It is established that suicide inactivation of neuronal nitric-oxide synthase (nNOS) with guanidine compounds, or inhibition of the hsp90-based chaperone system with geldanamycin, leads to the enhanced proteolytic degradation of nNOS. This regulated proteolysis is mediated, in part, by the proteasome. We show here with the use of human embryonic kidney 293 cells transfected with nNOS that inhibition of the proteasome with lactacystin leads to the accumulation of immunodetectable higher molecular mass forms of nNOS. Some of these higher molecular mass forms were immunoprecipitated by an anti-ubiquitin antibody, indicating that they are nNOS-polyubiquitin conjugates. Moreover, the predominant nNOS-ubiquitin conjugate detected in human embryonic kidney 293 cells, as well as in rat brain cytosol, migrates on SDS-polyacrylamide gels with a mobility near that for the native monomer of nNOS and likely represents a conjugate containing a few or perhaps one ubiquitin. Studies in vitro with the use of (125)I-ubiquitin and reticulocyte extracts could mimic this ubiquitination reaction, which was dependent on ATP. The heme-deficient monomeric form of nNOS is preferentially ubiquitinated over that of the heme-sufficient functionally active homodimer. Thus, we have shown for the first time that ubiquitination of nNOS occurs and is likely involved in the regulated proteolytic removal of non-functional enzyme.


Subject(s)
Nitric Oxide Synthase/metabolism , Ubiquitins/metabolism , Animals , Brain/enzymology , Cell Line , Cysteine Endopeptidases/metabolism , Cytosol/enzymology , Humans , Kidney , Multienzyme Complexes/metabolism , Nitric Oxide Synthase/isolation & purification , Nitric Oxide Synthase Type I , Proteasome Endopeptidase Complex , Rats , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Spodoptera , Transfection , Ubiquitins/isolation & purification
4.
J Biol Chem ; 275(4): 2376-80, 2000 Jan 28.
Article in English | MEDLINE | ID: mdl-10644688

ABSTRACT

Guanabenz, a metabolism-based irreversible inactivator of neuronal nitric-oxide synthase (nNOS) in vitro, causes the loss of immunodetectable nNOS in vivo. This process is selective in that the slowly reversible inhibitor N(G)-nitro-L-arginine did not decrease the levels of nNOS in vivo. To better understand the mechanism for the loss of nNOS protein in vivo, we have investigated the effects of guanabenz and N(G)-nitro-L-arginine in HEK 293 cells stably transfected with the enzyme. We show here that guanabenz, but not N(G)-nitro-L-arginine, caused the inactivation and loss of nNOS protein in the HEK 293 cells. In studies with cycloheximide or in pulse-chase experiments with [(35)S]methionine, we demonstrate that the loss of nNOS was due in large part to enhanced proteolysis of the protein with the half-life decreasing by one-half from 20 to 10 h. Other metabolism-based irreversible inactivators to nNOS, N(G)-methyl-L-arginine, and N(5)-(1-iminoethyl)-L-ornithine, but not the reversible inhibitor 7-nitroindazole (7-NI), caused a similar decrease in the half-life of nNOS. Proteasomal inhibitors, lactacystin, Cbz-leucine-leucine-leucinal, and N-acetyl-leucine-leucine-norleucinal, but not the lysosomal protease inhibitor leupeptin, were found to effectively inhibit the proteolytic degradation of nNOS. Thus we have shown for the first time that the irreversible inactivators of nNOS, perhaps through covalent alteration of the enzyme, enhance the proteolytic turnover of the enzyme by a mechanism involving the proteasome.


Subject(s)
Guanabenz/pharmacology , Nitric Oxide Synthase/antagonists & inhibitors , Protease Inhibitors/pharmacology , Animals , Cell Line , Humans , Hydrolysis , Nitric Oxide Synthase/metabolism , Nitric Oxide Synthase Type I , Rats , Transfection
5.
J Biol Chem ; 274(3): 1472-8, 1999 Jan 15.
Article in English | MEDLINE | ID: mdl-9880522

ABSTRACT

It is established that the multiprotein heat shock protein 90 (hsp90)-based chaperone system acts on the ligand binding domain of the glucocorticoid receptor (GR) to form a GR.hsp90 heterocomplex and to convert the receptor ligand binding domain to the steroid-binding state. Treatment of cells with the hsp90 inhibitor geldanamycin inactivates steroid binding activity and increases the rate of GR turnover. We show here that a portion of neuronal nitric-oxide synthase (nNOS) exists as a molybdate-stabilized nNOS. hsp90 heterocomplex in the cytosolic fraction of human embryonic kidney 293 cells stably transfected with rat nNOS. Treatment of human embryonic kidney 293 cells with geldanamycin both decreases nNOS catalytic activity and increases the rate of nNOS turnover. Similarly, geldanamycin treatment of nNOS-expressing Sf9 cells partially inhibits nNOS activation by exogenous heme. Like the GR, purified heme-free apo-nNOS is activated by the DE52-retained fraction of rabbit reticulocyte lysate, which also assembles nNOS. hsp90 heterocomplexes. However, in contrast to the GR, heterocomplex assembly with hsp90 is not required for increased heme binding and nNOS activation in this cell-free system. We propose that, in vivo, where access by free heme is limited, the complete hsp90-based chaperone machinery is required for sustained opening of the heme binding cleft and nNOS activation, but in the heme-containing cell-free nNOS-activating system transient opening of the heme binding cleft without hsp90 is sufficient to facilitate heme binding.


Subject(s)
HSP90 Heat-Shock Proteins/metabolism , Nitric Oxide Synthase/metabolism , Animals , Benzoquinones , Cell Line , Cell-Free System , Enzyme Activation , Enzyme Inhibitors/pharmacology , Humans , Lactams, Macrocyclic , Nitric Oxide Synthase Type I , Protein Conformation , Protein Folding , Quinones/pharmacology , Rabbits , Rats , Spodoptera
6.
J Biol Chem ; 272(34): 21213-20, 1997 Aug 22.
Article in English | MEDLINE | ID: mdl-9261129

ABSTRACT

In cytosols from animal and plant cells, the abundant heat shock protein hsp90 is associated with several proteins that act together to assemble steroid receptors into receptor.hsp90 heterocomplexes. We have reconstituted a minimal receptor.hsp90 assembly system containing four required components, hsp90, hsp70, p60, and p23 (Dittmar, K. D., Hutchison, K. A., Owens-Grillo, J. K., and Pratt, W. B. (1996) J. Biol. Chem. 271, 12833-12839). We have shown that hsp90, p60, and hsp70 are sufficient for carrying out the folding change that converts the glucocorticoid receptor (GR) hormone binding domain (HBD) from a non-steroid binding to a steroid binding conformation, but to form stable GR.hsp90 heterocomplexes, p23 must also be present in the incubation mix (Dittmar, K. D., and Pratt, W. B. (1997) J. Biol. Chem. 272, 13047-13054). In this work, we show that addition of p23 to native GR.hsp90 heterocomplexes immunoadsorbed from L cell cytosol or to GR.hsp90 heterocomplexes prepared with the minimal (hsp90.p60.hsp70) assembly system inhibits both receptor heterocomplex disassembly and loss of steroid binding activity. p23 stabilizes the GR.hsp90 heterocomplex in a dynamic and ATP-independent manner. In contrast to hsp90 that is bound to the GR, free hsp90 binds p23 in an ATP-dependent manner, and hsp90 in the hsp90.p60.hsp70 heterocomplex is in a conformation that does not bind p23 at all. The effect of p23 in the minimal GR heterocomplex assembly system is to stabilize GR.hsp90 heterocomplexes once they are formed and it does not appear to affect the rate of heterocomplex assembly. Molybdate has the same ability as p23 to stabilize GR heterocomplexes with mammalian hsp90, but GR heterocomplexes with plant hsp90 are stabilized by p23 and not by molybdate. We propose that incubation of the GR with hsp90.p60.hsp70 forms a GR.hsp90 heterocomplex in which hsp90 is in an ATP-dependent conformation. The ATP-dependent conformation of hsp90 is required for the hormone binding domain to have a steroid binding site, and binding of p23 to that state of hsp90 stabilizes the GR.hsp90 heterocomplex to inactivation and disassembly.


Subject(s)
HSP90 Heat-Shock Proteins/physiology , Molecular Chaperones/physiology , Receptors, Glucocorticoid/chemistry , Adenosine Triphosphate/metabolism , Animals , Cell-Free System , HSP70 Heat-Shock Proteins/physiology , Heat-Shock Proteins/metabolism , Macromolecular Substances , Molecular Chaperones/chemistry , Molybdenum/pharmacology , Plant Proteins/chemistry , Protein Binding , Protein Folding , Solubility , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL