Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am Nat ; 199(4): 455-467, 2022 04.
Article in English | MEDLINE | ID: mdl-35324374

ABSTRACT

AbstractSupply and demand affect the values of goods exchanged in cooperative trades. Studies of humans and other species typically describe the standard scenario that an increase in demand leads to a higher price. Here, we challenge the generality of that logic with empirical data and a theoretical model. In our study system, "client" fishes visit cleaner wrasse (Labroides dimidiatus) to have ectoparasites removed, but cleaners prefer client mucus, which constitutes "cheating." We removed 31 of 65 preselected cleaners from a large isolated reef patch. We compared cleaner-client interactions at the reef and a control reef before removal and 4 weeks after removal. Cleaner fish from the experimental treatment site interacted more frequently with large clients (typically visitors with access to alternative cleaning stations), but we did not observe any changes in service quality measures. A game-theoretic analysis revealed that interaction duration and service quality might increase, decrease, or remain unchanged depending on the precise relationships between key parameters, such as the marginal benefits of cheating as a function of satiation or the likelihood of clients responding to cheating as a function of market conditions. The analyses show that the principle of diminishing return may affect exchanges in ways not predicted by supply-to-demand ratios.


Subject(s)
Perciformes , Symbiosis , Animals , Fishes , Humans , Logic
2.
Ecol Evol ; 7(16): 6304-6313, 2017 08.
Article in English | MEDLINE | ID: mdl-28861234

ABSTRACT

In the arms race between plants, herbivores, and their natural enemies, specialized herbivores may use plant defenses for their own benefit, and variation in plant traits may affect the benefits that herbivores derive from these defenses. Pieris brassicae is a specialist herbivore of plants containing glucosinolates, a specific class of defensive secondary metabolites. Caterpillars of P. brassicae are known to actively spit on attacking natural enemies, including their main parasitoid, the braconid wasp Cotesia glomerata. Here, we tested the hypothesis that variation in the secondary metabolites of host plants affects the efficacy of caterpillar regurgitant as an anti-predator defense. Using a total of 10 host plants with different glucosinolate profiles, we first studied natural regurgitation events of caterpillars on parasitoids. We then studied manual applications of water or regurgitant on parasitoids during parasitization events. Results from natural regurgitation events revealed that parasitoids spent more time grooming after attack when foraging on radish and nasturtium than on Brassica spp., and when the regurgitant came in contact with the wings rather than any other body part. Results from manual applications of regurgitant showed that all parameters of parasitoid behavior (initial attack duration, attack interruption, grooming time, and likelihood of a second attack) were more affected when regurgitant was applied rather than water. The proportion of parasitoids re-attacking a caterpillar within 15 min was the lowest when regurgitant originated from radish-fed caterpillars. However, we found no correlation between glucosinolate content and regurgitant effects, and parasitoid behavior was equally affected when regurgitant originated from a glucosinolate-deficient Arabidopsis thaliana mutant line. In conclusion, host plant affects to a certain extent the efficacy of spit from P. brassicae caterpillars as a defense against parasitoids, but this is not due to glucosinolate content. The nature of the defensive compounds present in the spit remains to be determined, and the ecological relevance of this anti-predator defense needs to be further evaluated in the field.

SELECTION OF CITATIONS
SEARCH DETAIL
...