Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Plant Physiol ; 193(1): 271-290, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37177985

ABSTRACT

Viral RNAs can be uridylated in eukaryotic hosts. However, our knowledge of uridylation patterns and roles remains rudimentary for phytoviruses. Here, we report global 3' terminal RNA uridylation profiles for representatives of the main families of positive single-stranded RNA phytoviruses. We detected uridylation in all 47 viral RNAs investigated here, revealing its prevalence. Yet, uridylation levels of viral RNAs varied from 0.2% to 90%. Unexpectedly, most poly(A) tails of grapevine fanleaf virus (GFLV) RNAs, including encapsidated tails, were strictly monouridylated, which corresponds to an unidentified type of viral genomic RNA extremity. This monouridylation appears beneficial for GFLV because it became dominant when plants were infected with nonuridylated GFLV transcripts. We found that GFLV RNA monouridylation is independent of the known terminal uridylyltransferases (TUTases) HEN1 SUPPRESSOR 1 (HESO1) and UTP:RNA URIDYLYLTRANSFERASE 1 (URT1) in Arabidopsis (Arabidopsis thaliana). By contrast, both TUTases can uridylate other viral RNAs like turnip crinkle virus (TCV) and turnip mosaic virus (TuMV) RNAs. Interestingly, TCV and TuMV degradation intermediates were differentially uridylated by HESO1 and URT1. Although the lack of both TUTases did not prevent viral infection, we detected degradation intermediates of TCV RNA at higher levels in an Arabidopsis heso1 urt1 mutant, suggesting that uridylation participates in clearing viral RNA. Collectively, our work unveils an extreme diversity of uridylation patterns across phytoviruses and constitutes a valuable resource to further decipher pro- and antiviral roles of uridylation.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Uridine/metabolism , RNA, Messenger/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , RNA Nucleotidyltransferases/metabolism
2.
Molecules ; 27(10)2022 May 10.
Article in English | MEDLINE | ID: mdl-35630529

ABSTRACT

The grapevine fanleaf virus (GFLV), responsible for fanleaf degeneration, is spread in vineyards by the soil nematode Xiphinema index. Nematicide molecules were used to limit the spread of the disease until they were banned due to negative environmental impacts. Therefore, there is a growing interest in alternative methods, including plant-derived products with antagonistic effects to X. index. In this work, we evaluated the nematicidal potential of the aerial parts and roots of four Fabaceae: sainfoin (Onobrychis viciifolia), birdsfoot trefoil (Lotus corniculatus), sweet clover (Melilotus albus), and red clover (Trifolium pratense), as well as that of sainfoin-based commercial pellets. For all tested plants, either aerial or root parts, or both of them, exhibited a nematicidal effect on X. index in vitro, pellets being as effective as freshly harvested plants. Comparative metabolomic analyses did not reveal molecules or molecule families specifically associated with antagonistic properties toward X. index, suggesting that the nematicidal effect is the result of a combination of different molecules rather than associated with a single compound. Finally, scanning electron microscope observations did not reveal the visible impact of O. viciifolia extract on X. index cuticle, suggesting that alteration of the cuticle may not be the primary cause of their nematicidal effect.


Subject(s)
Lotus , Nematoda , Animals , Antinematodal Agents/pharmacology , Humans , Plant Diseases , Soil
3.
Commun Biol ; 4(1): 637, 2021 05 28.
Article in English | MEDLINE | ID: mdl-34050254

ABSTRACT

Grapevine fanleaf disease, caused by grapevine fanleaf virus (GFLV), transmitted by the soil-borne nematode Xiphinema index, provokes severe symptoms and economic losses, threatening vineyards worldwide. As no effective solution exists so far to control grapevine fanleaf disease in an environmentally friendly way, we investigated the presence of resistance to GFLV in grapevine genetic resources. We discovered that the Riesling variety displays resistance to GFLV, although it is susceptible to X. index. This resistance is determined by a single recessive factor located on grapevine chromosome 1, which we have named rgflv1. The discovery of rgflv1 paves the way for the first effective and environmentally friendly solution to control grapevine fanleaf disease through the development of new GFLV-resistant grapevine rootstocks, which was hitherto an unthinkable prospect. Moreover, rgflv1 is putatively distinct from the virus susceptibility factors already described in plants.


Subject(s)
Disease Resistance/genetics , Nepovirus/pathogenicity , Vitis/genetics , Agriculture/methods , Animals , Genotype , Nematoda/virology , Nepovirus/genetics , Plant Breeding/methods , Plant Diseases/genetics , Plant Diseases/virology , Vitis/metabolism , Vitis/microbiology
4.
Proc Natl Acad Sci U S A ; 117(20): 10848-10855, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32371486

ABSTRACT

Grapevine fanleaf virus (GFLV) is a picorna-like plant virus transmitted by nematodes that affects vineyards worldwide. Nanobody (Nb)-mediated resistance against GFLV has been created recently, and shown to be highly effective in plants, including grapevine, but the underlying mechanism is unknown. Here we present the high-resolution cryo electron microscopy structure of the GFLV-Nb23 complex, which provides the basis for molecular recognition by the Nb. The structure reveals a composite binding site bridging over three domains of one capsid protein (CP) monomer. The structure provides a precise mapping of the Nb23 epitope on the GFLV capsid in which the antigen loop is accommodated through an induced-fit mechanism. Moreover, we uncover and characterize several resistance-breaking GFLV isolates with amino acids mapping within this epitope, including C-terminal extensions of the CP, which would sterically interfere with Nb binding. Escape variants with such extended CP fail to be transmitted by nematodes linking Nb-mediated resistance to vector transmission. Together, these data provide insights into the molecular mechanism of Nb23-mediated recognition of GFLV and of virus resistance loss.


Subject(s)
Nepovirus/drug effects , Plant Diseases/immunology , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/pharmacology , Animals , Antibodies, Viral/immunology , Capsid/chemistry , Capsid Proteins/chemistry , Capsid Proteins/drug effects , Cryoelectron Microscopy , Epitopes/chemistry , Models, Molecular , Nematoda/virology , Nepovirus/ultrastructure , Plant Diseases/virology , Plant Leaves/virology , Plant Viruses/immunology , Plant Viruses/physiology , Protein Conformation , Vitis
5.
Viruses ; 11(12)2019 12 10.
Article in English | MEDLINE | ID: mdl-31835488

ABSTRACT

Grapevine fanleaf virus (GFLV) is responsible for a widespread disease in vineyards worldwide. Its genome is composed of two single-stranded positive-sense RNAs, which both show a high genetic diversity. The virus is transmitted from grapevine to grapevine by the ectoparasitic nematode Xiphinema index. Grapevines in diseased vineyards are often infected by multiple genetic variants of GFLV but no information is available on the molecular composition of virus variants retained in X. index following nematodes feeding on roots. In this work, aviruliferous X. index were fed on three naturally GFLV-infected grapevines for which the virome was characterized by RNAseq. Six RNA-1 and four RNA-2 molecules were assembled segregating into four and three distinct phylogenetic clades of RNA-1 and RNA-2, respectively. After 19 months of rearing, single and pools of 30 X. index tested positive for GFLV. Additionally, either pooled or single X. index carried multiple variants of the two GFLV genomic RNAs. However, the full viral genetic diversity found in the leaves of infected grapevines was not detected in viruliferous nematodes, indicating a genetic bottleneck. Our results provide new insights into the complexity of GFLV populations and the putative role of X. index as reservoirs of virus diversity.


Subject(s)
Disease Vectors , Genetic Variation , Nematoda/virology , Nepovirus/genetics , Vitis/parasitology , Vitis/virology , Animals , Computational Biology/methods , High-Throughput Nucleotide Sequencing , Phylogeny , Plant Diseases/virology , RNA, Viral
6.
Viruses ; 11(12)2019 12 11.
Article in English | MEDLINE | ID: mdl-31835698

ABSTRACT

Grapevine fanleaf virus (GFLV) and arabis mosaic virus (ArMV) are nepoviruses responsible for grapevine degeneration. They are specifically transmitted from grapevine to grapevine by two distinct ectoparasitic dagger nematodes of the genus Xiphinema. GFLV and ArMV move from cell to cell as virions through tubules formed into plasmodesmata by the self-assembly of the viral movement protein. Five surface-exposed regions in the coat protein called R1 to R5, which differ between the two viruses, were previously defined and exchanged to test their involvement in virus transmission, leading to the identification of region R2 as a transmission determinant. Region R4 (amino acids 258 to 264) could not be tested in transmission due to its requirement for plant systemic infection. Here, we present a fine-tuning mutagenesis of the GFLV coat protein in and around region R4 that restored the virus movement and allowed its evaluation in transmission. We show that residues T258, M260, D261, and R301 play a crucial role in virus transmission, thus representing a new viral determinant of nematode transmission.


Subject(s)
Disease Vectors , Nematoda/virology , Nepovirus/classification , Nepovirus/physiology , Plant Diseases/parasitology , Plant Diseases/virology , Amino Acid Sequence , Animals , Genes, Reporter , Models, Molecular , Nepovirus/ultrastructure , Protein Conformation , RNA, Viral , Recombination, Genetic , Structure-Activity Relationship , Viral Proteins/chemistry , Viral Proteins/genetics
7.
Int J Mol Sci ; 20(13)2019 Jul 03.
Article in English | MEDLINE | ID: mdl-31277202

ABSTRACT

Xiphinema index is an important plant parasitic nematode that induces direct damages and specifically transmits the Grapevine fanleaf virus, which is particularly harmful for grapevines. Genomic resources of this nematode species are still limited and no functional gene validation technology is available. RNA interference (RNAi) is a powerful technology to study gene function and here we describe the application of RNAi on several genes in X. index. Soaking the nematodes for 48 h in a suspension containing specific small interfering RNAs resulted in a partial inhibition of the accumulation of some targeted mRNA. However, low reproducible silencing efficiency was observed which could arise from X. index silencing pathway deficiencies. Indeed, essential accustomed proteins for these pathways were not found in the X. index proteome predicted from transcriptomic data. The most reproducible silencing effect was obtained when targeting the piccolo gene potentially involved in endo-exocytosis of synaptic molecules. This represents the first report of gene silencing in a nematode belonging to the Longidoridae family.


Subject(s)
Gene Expression Regulation , Nematoda/genetics , RNA, Small Interfering/metabolism , Animals , Nematoda/metabolism , Plant Diseases , RNA Interference , Vitis/parasitology
8.
Arch Virol ; 163(11): 3105-3111, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30043203

ABSTRACT

Over the last decade, many scientific disciplines have been impacted by the dawn of new sequencing techniques (HTS: high throughput sequencing). Plant pathology and more specifically virology have been greatly transformed by this 'metagenomics' paradigm shift. Such tools significantly facilitate disease diagnostics with tremendous sensitivity, providing invaluable information such as an exhaustive list of viruses being present in a sample as well as their relative concentration. In addition, many new plant viruses have been discovered. Using RNAseq technology, in silico reconstruction of complete viral genome sequences is easily attainable. This step is of importance for taxonomy, population structure analyses, phylogeography and viral evolution studies. Here, after assembling 81 new near-complete genome sequences of grapevine rupestris stem pitting-associated virus (GRSPaV), we performed a genome-wide diversity study of this ubiquitous virus of grapevine worldwide.


Subject(s)
Flexiviridae/isolation & purification , Genetic Variation , Genome, Viral , Plant Diseases/virology , Plant Viruses/genetics , Vitis/virology , Flexiviridae/classification , Flexiviridae/genetics , Phylogeny , Plant Viruses/classification , Plant Viruses/isolation & purification , Sequence Analysis, DNA
9.
Plant Biotechnol J ; 16(2): 660-671, 2018 02.
Article in English | MEDLINE | ID: mdl-28796912

ABSTRACT

Since their discovery, single-domain antigen-binding fragments of camelid-derived heavy-chain-only antibodies, also known as nanobodies (Nbs), have proven to be of outstanding interest as therapeutics against human diseases and pathogens including viruses, but their use against phytopathogens remains limited. Many plant viruses including Grapevine fanleaf virus (GFLV), a nematode-transmitted icosahedral virus and causal agent of fanleaf degenerative disease, have worldwide distribution and huge burden on crop yields representing billions of US dollars of losses annually, yet solutions to combat these viruses are often limited or inefficient. Here, we identified a Nb specific to GFLV that confers strong resistance to GFLV upon stable expression in the model plant Nicotiana benthamiana and also in grapevine rootstock, the natural host of the virus. We showed that resistance was effective against a broad range of GFLV isolates independently of the inoculation method including upon nematode transmission but not against its close relative, Arabis mosaic virus. We also demonstrated that virus neutralization occurs at an early step of the virus life cycle, prior to cell-to-cell movement. Our findings will not only be instrumental to confer resistance to GFLV in grapevine, but more generally they pave the way for the generation of novel antiviral strategies in plants based on Nbs.


Subject(s)
Plant Diseases/immunology , Plant Diseases/virology , Nepovirus/pathogenicity , Plant Viruses/genetics , Plant Viruses/physiology , Single-Domain Antibodies/genetics , Single-Domain Antibodies/physiology
10.
Plant Biotechnol J ; 16(1): 208-220, 2018 01.
Article in English | MEDLINE | ID: mdl-28544449

ABSTRACT

For some crops, the only possible approach to gain a specific trait requires genome modification. The development of virus-resistant transgenic plants based on the pathogen-derived resistance strategy has been a success story for over three decades. However, potential risks associated with the technology, such as horizontal gene transfer (HGT) of any part of the transgene to an existing gene pool, have been raised. Here, we report no evidence of any undesirable impacts of genetically modified (GM) grapevine rootstock on its biotic environment. Using state of the art metagenomics, we analysed two compartments in depth, the targeted Grapevine fanleaf virus (GFLV) populations and nontargeted root-associated microbiota. Our results reveal no statistically significant differences in the genetic diversity of bacteria that can be linked to the GM trait. In addition, no novel virus or bacteria recombinants of biosafety concern can be associated with transgenic grapevine rootstocks cultivated in commercial vineyard soil under greenhouse conditions for over 6 years.


Subject(s)
Metagenomics/methods , Plants, Genetically Modified/genetics , Vitis/genetics , Plants, Genetically Modified/microbiology , Plants, Genetically Modified/virology , Vitis/microbiology , Vitis/virology
12.
Plant Biotechnol J ; 14(12): 2288-2299, 2016 12.
Article in English | MEDLINE | ID: mdl-27178344

ABSTRACT

Virus-like particles (VLPs) derived from nonenveloped viruses result from the self-assembly of capsid proteins (CPs). They generally show similar structural features to viral particles but are noninfectious and their inner cavity and outer surface can potentially be adapted to serve as nanocarriers of great biotechnological interest. While a VLP outer surface is generally amenable to chemical or genetic modifications, encaging a cargo within particles can be more complex and is often limited to small molecules or peptides. Examples where both inner cavity and outer surface have been used to simultaneously encapsulate and expose entire proteins remain scarce. Here, we describe the production of spherical VLPs exposing fluorescent proteins at either their outer surface or inner cavity as a result of the self-assembly of a single genetically modified viral structural protein, the CP of grapevine fanleaf virus (GFLV). We found that the N- and C-terminal ends of the GFLV CP allow the genetic fusion of proteins as large as 27 kDa and the plant-based production of nucleic acid-free VLPs. Remarkably, expression of N- or C-terminal CP fusions resulted in the production of VLPs with recombinant proteins exposed to either the inner cavity or the outer surface, respectively, while coexpression of both fusion proteins led to the formation hybrid VLP, although rather inefficiently. Such properties are rather unique for a single viral structural protein and open new potential avenues for the design of safe and versatile nanocarriers, particularly for the targeted delivery of bioactive molecules.


Subject(s)
Nepovirus/physiology , Recombinant Proteins/metabolism , Vitis/virology , Capsid Proteins/genetics , Capsid Proteins/metabolism , Nanoparticles , Nepovirus/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Recombinant Proteins/genetics
13.
Protein Expr Purif ; 109: 29-34, 2015 May.
Article in English | MEDLINE | ID: mdl-25655203

ABSTRACT

A frequent problem of recombinant protein production is their insolubility. To address this issue, engineered Escherichiacoli strains like Arctic Express that produce an exogenous chaperone facilitating protein folding, have been designed. A drawback is the frequent contamination of the protein by chaperones. A simple method, using urea at a sub-denaturing concentration, allows unbinding of Cpn60 from expressed protein. This method was successfully used to purify 2 proteins, an enzyme and a viral protein. The enzyme was fully active. The nature of interaction forces between enzyme and Cpn60 was investigated. The method is likely applicable to purify other proteins.


Subject(s)
Biochemistry/methods , Chaperonin 60/metabolism , Escherichia coli/metabolism , Genetic Engineering , Recombinant Proteins/metabolism , Dynamic Light Scattering , Electrophoresis, Polyacrylamide Gel , Kinetics
14.
J Struct Biol ; 182(1): 1-9, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23376736

ABSTRACT

Arabis mosaic virus (ArMV) and Grapevine fanleaf virus (GFLV) are two picorna-like viruses from the genus Nepovirus, consisting in a bipartite RNA genome encapsidated into a 30 nm icosahedral viral particle formed by 60 copies of a single capsid protein (CP). They are responsible for a severe degeneration of grapevines that occurs in most vineyards worldwide. Although sharing a high level of sequence identity between their CP, ArMV is transmitted exclusively by the ectoparasitic nematode Xiphinema diversicaudatum whereas GFLV is specifically transmitted by the nematode X. index. The structural determinants involved in the transmission specificity of both viruses map solely to their respective CP. Recently, reverse genetic and crystallographic studies on GFLV revealed that a positively charged pocket in the CP B domain located at the virus surface may be responsible for vector specificity. To go further into delineating the coat protein determinants involved in transmission specificity, we determined the 6.5 Å resolution cryo-electron microscopy structure of ArMV and used homology modeling and flexible fitting approaches to build its pseudo-atomic structure. This study allowed us to resolve ArMV CP architecture and delineate connections between ArMV capsid shell and its RNA. Comparison of ArMV and GFLV CPs reveals structural differences in the B domain pocket, thus strengthening the hypothesis of a key role of this region in the viral transmission specificity and identifies new potential functional domains of Nepovirus capsid.


Subject(s)
Capsid Proteins/chemistry , Capsid/ultrastructure , Nepovirus/physiology , Nepovirus/ultrastructure , RNA, Viral/metabolism , Animals , Capsid/metabolism , Capsid Proteins/genetics , Capsid Proteins/metabolism , Enoplida/virology , Models, Molecular , Mosaic Viruses/chemistry , Mosaic Viruses/physiology , Mosaic Viruses/ultrastructure , Nepovirus/chemistry , Plant Diseases/virology , Protein Structure, Tertiary
15.
Phytopathology ; 102(6): 627-34, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22376084

ABSTRACT

The dagger nematode Xiphinema index has a high economic impact in vineyards by direct pathogenicity and above all by transmitting the Grapevine fanleaf virus (GFLV). Agrochemicals have been largely employed to restrict the spread of GFLV by reducing X. index populations but are now banned. As an alternative to nematicides, the use of fallow plants between two successive vine crops was assessed. We selected plant species adapted to vineyard soils and exhibiting negative impact on nematodes and we evaluated their antagonistic effect on X. index in greenhouse using artificially infested soil, and in naturally infested vineyard conditions. The screening was conducted with plants belonging to the families Asteraceae (sunflower, marigold, zinnia, and nyjer), Poaceae (sorghum and rye), Fabaceae (white lupin, white melilot, hairy vetch, and alfalfa), Brassicaceae (rapeseed and camelina), and Boraginaceae (phacelia). In the greenhouse controlled assay, white lupin, nyjer, and marigold significantly reduced X. index populations compared with that of bare soil. The vineyard assay, designed to take into account the aggregative pattern of X. index distribution, revealed that marigold and hairy vetch are good candidates as cover crops to reduce X. index populations in vineyard. Moreover, this original experimental design could be applied to manage other soilborne pathogens.


Subject(s)
Nematoda/growth & development , Pest Control, Biological/methods , Plant Diseases/prevention & control , Plants/parasitology , Vitis/parasitology , Animals , Nepovirus/physiology , Pest Control, Biological/statistics & numerical data , Plant Diseases/parasitology , Plant Diseases/virology , Plant Roots/microbiology , Plant Roots/parasitology , Plants/virology , Soil/parasitology , Vitis/virology
16.
PLoS Pathog ; 7(5): e1002034, 2011 May.
Article in English | MEDLINE | ID: mdl-21625570

ABSTRACT

Many animal and plant viruses rely on vectors for their transmission from host to host. Grapevine fanleaf virus (GFLV), a picorna-like virus from plants, is transmitted specifically by the ectoparasitic nematode Xiphinema index. The icosahedral capsid of GFLV, which consists of 60 identical coat protein subunits (CP), carries the determinants of this specificity. Here, we provide novel insight into GFLV transmission by nematodes through a comparative structural and functional analysis of two GFLV variants. We isolated a mutant GFLV strain (GFLV-TD) poorly transmissible by nematodes, and showed that the transmission defect is due to a glycine to aspartate mutation at position 297 (Gly297Asp) in the CP. We next determined the crystal structures of the wild-type GFLV strain F13 at 3.0 Å and of GFLV-TD at 2.7 Å resolution. The Gly297Asp mutation mapped to an exposed loop at the outer surface of the capsid and did not affect the conformation of the assembled capsid, nor of individual CP molecules. The loop is part of a positively charged pocket that includes a previously identified determinant of transmission. We propose that this pocket is a ligand-binding site with essential function in GFLV transmission by X. index. Our data suggest that perturbation of the electrostatic landscape of this pocket affects the interaction of the virion with specific receptors of the nematode's feeding apparatus, and thereby severely diminishes its transmission efficiency. These data provide a first structural insight into the interactions between a plant virus and a nematode vector.


Subject(s)
Capsid Proteins/genetics , Nematoda/virology , Nepovirus , Protein Structure, Quaternary , Amino Acid Substitution , Animals , Capsid , Mutation , Nepovirus/genetics , Nepovirus/metabolism , Nepovirus/ultrastructure , Plant Diseases/genetics , Plant Diseases/virology , Plant Viruses/genetics , RNA, Viral/genetics , Sequence Alignment , Sequence Analysis, Protein , Static Electricity , X-Ray Diffraction
17.
J Struct Biol ; 174(2): 344-51, 2011 May.
Article in English | MEDLINE | ID: mdl-21352920

ABSTRACT

The small icosahedral plant RNA nepovirus Grapevine fanleaf virus (GFLV) is specifically transmitted by a nematode and causes major damage to vineyards worldwide. To elucidate the molecular mechanisms underlying the recognition between the surface of its protein capsid and cellular components of its vector, host and viral proteins synthesized upon infection, the wild type GFLV strain F13 and a natural mutant (GFLV-TD) carrying a Gly297Asp mutation were purified, characterized and crystallized. Subsequently, the geometry and volume of their crystals was optimized by establishing phase diagrams. GFLV-TD was twice as soluble as the parent virus in the crystallization solution and its crystals diffracted X-rays to a resolution of 2.7 Å. The diffraction limit of GFLV-F13 crystals was extended from 5.5 to 3 Å by growth in agarose gel. Preliminary crystallographic analyses indicate that both types of crystals are suitable for structure determination. Keys for the successful production of GFLV crystals include the rigorous quality control of virus preparations, crystal quality improvement using phase diagrams, and crystal lattice reinforcement by growth in agarose gel. These strategies are applicable to the production of well-diffracting crystals of other viruses and macromolecular assemblies.


Subject(s)
Nepovirus/chemistry , Vitis/virology , Crystallization , Crystallography, X-Ray , Particle Size , Sepharose/chemistry , Solubility , Virion/chemistry , Virion/isolation & purification
18.
Antonie Van Leeuwenhoek ; 100(2): 197-206, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21442351

ABSTRACT

The control of grapevine pathogens is a rising concern in Vitis vinifera culture. The current international trend is toward banning chemicals that are highly toxic to the environment and human workers, and adopting tighter regulations. We evaluated the impact of saponins on three kinds of organisms found in grapevine culture. The ectoparasitic nematode Xiphinema index, the parasitic fungus Botrytis cinerea and various yeast strains representative of the must fermentation population were incubated on synthetic media supplemented with variable concentrations of Quillaja saponaria saponins. Saponins induced reduction in the growth of B. cinerea and showed nematicide effects on X. index. The control of X. index and Botrytis cinerea is discussed in the context of the potential use of these chemicals as environmentally-friendly grapevine treatments. With Saccharomyces cerevisiae and other yeasts, saponins showed higher toxicity against S. cerevisiae strains isolated from wine or palm wine whereas laboratory strains or strains isolated from oak exhibited better resistance. This indicates that Q. saponaria saponins effects against yeast microflora should be assessed in the field before they can be considered an environmentally-safe new molecule against B. cinerea and X. index.


Subject(s)
Botrytis/drug effects , Nematoda/drug effects , Quillaja/chemistry , Saccharomyces cerevisiae/drug effects , Saponins/pharmacology , Vitis/microbiology , Animals , Antinematodal Agents/pharmacology , Botrytis/growth & development , Fermentation , Germination , Mycelium/drug effects , Mycelium/growth & development , Plant Bark/chemistry , Spores, Fungal/drug effects , Spores, Fungal/growth & development , Vitis/parasitology , Wine/microbiology
19.
J Virol ; 84(16): 7924-33, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20519403

ABSTRACT

Grapevine fanleaf virus (GFLV) and Arabis mosaic virus (ArMV) from the genus Nepovirus, family Secoviridae, cause a severe degeneration of grapevines. GFLV and ArMV have a bipartite RNA genome and are transmitted specifically by the ectoparasitic nematodes Xiphinema index and Xiphinema diversicaudatum, respectively. The transmission specificity of both viruses maps to their respective RNA2-encoded coat protein (CP). To further delineate the GFLV CP determinants of transmission specificity, three-dimensional (3D) homology structure models of virions and CP subunits were constructed based on the crystal structure of Tobacco ringspot virus, the type member of the genus Nepovirus. The 3D models were examined to predict amino acids that are exposed at the external virion surface, highly conserved among GFLV isolates but divergent between GFLV and ArMV. Five short amino acid stretches that matched these topographical and sequence conservation criteria were selected and substituted in single and multiple combinations by their ArMV counterparts in a GFLV RNA2 cDNA clone. Among the 21 chimeric RNA2 molecules engineered, transcripts of only three of them induced systemic plant infection in the presence of GFLV RNA1. Nematode transmission assays of the three viable recombinant viruses showed that swapping a stretch of (i) 11 residues in the betaB-betaC loop near the icosahedral 3-fold axis abolished transmission by X. index but was insufficient to restore transmission by X. diversicaudatum and (ii) 7 residues in the betaE-alphaB loop did not interfere with transmission by the two Xiphinema species. This study provides new insights into GFLV CP determinants of nematode transmission.


Subject(s)
Capsid Proteins/physiology , Disease Vectors , Nematoda/virology , Nepovirus/physiology , Plant Diseases/virology , Amino Acid Sequence , Amino Acids/genetics , Animals , Capsid Proteins/chemistry , Capsid Proteins/genetics , Models, Molecular , Molecular Sequence Data , Nepovirus/chemistry , Nepovirus/genetics , Protein Structure, Quaternary , Protein Structure, Tertiary , Recombination, Genetic , Sequence Alignment , Vitis/virology
20.
Phytopathology ; 100(4): 384-9, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20205542

ABSTRACT

Grapevine fanleaf virus (GFLV) is vectored specifically from grapevine to grapevine by the ectoparasitic nematode Xiphinema index. Limited information is available on the vector competency of X. index populations from diverse geographical origins. We determined the transmissibility of two GFLV strains showing 4.6% amino acid divergence within their coat protein (e.g., strains F13 and GHu) by seven clonal lines of X. index developed from seven distinct populations from the Mediterranean basin (Cyprus, southern France, Israel, Italy, and Spain), northern France, and California. X. index lines derived from single adult females were produced on fig (Ficus carica) plants to obtain genetically homogenous aviruliferous clones. A comparative reproductive rate analysis on Vitis rupestris du Lot and V. vinifera cv. Cabernet Sauvignon showed significant differences among clones, with the single-female Cyprus line showing the highest rate (30-fold the initial population) and the Spain and California lines showing the lowest rate (10-fold increase), regardless of the grapevine genotype. However, there was no differential vector competency among the seven X. index lines for GFLV strains F13 and GHu. The implications of our findings for the dynamic of GFLV transmission in vineyards and screening of Vitis spp. for resistance to GFLV are discussed.


Subject(s)
Nematoda/microbiology , Plant Diseases/virology , Plant Viruses/physiology , Vitis/parasitology , Vitis/virology , Animals , Female
SELECTION OF CITATIONS
SEARCH DETAIL
...