Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Environ Sci (China) ; 124: 644-654, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36182170

ABSTRACT

A solid phase extraction procedure (SPE) is described for the quantitative analysis of polycyclic aromatic hydrocarbons (PAHs) in atmospheric particulate matter (PM), as ubiquitous environmental pollutants routinely measured in air quality monitoring. A SPE cartridge was used based on a molecular imprinted polymer (MIP-SPE) properly tailored for selective retention of PAHs with 4 and more benzene fused rings. The performance of the clean-up procedure was evaluated with the specific concern of selective purification towards saturated hydrocarbons, which are the PM components mostly interfering GC analysis of target PAHs. Under optimized operative conditions, the MIP-SPE provided analyte recovery close to 95% for heavier PAHs, from benzo(α)pyrene to benzo(ghi)perylene, and close to 90% for four benzene rings PAHs, with good reproducibility (RSDs: 2.5%-5.9%). Otherwise, C17-C32n-alkanes were nearly completely removed. The proposed method was critically compared with Solid Phase Micro Extraction (SPME) using a polyacrylate fiber. Both methods were successfully applied to the analysis of ambient PM2.5 samples collected at an urban polluted site. Between the two procedures, the MIP-SPE provided the highest recovery (R% ≥ 93%) for PAHs with 5 and more benzene rings, but lower for lighter PAHs. In contrast, SPME showed a mean acceptable R% value (∼ 80%) for all the investigated PAHs, except for the heaviest PAHs in the most polluted samples (R%: 110%-138%), suggesting an incomplete purification from the interfering n-hydrocarbons.


Subject(s)
Environmental Pollutants , Polycyclic Aromatic Hydrocarbons , Alkanes/analysis , Benzene , Benzo(a)pyrene/analysis , Dust/analysis , Environmental Pollutants/analysis , Gas Chromatography-Mass Spectrometry/methods , Molecularly Imprinted Polymers , Particulate Matter/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Reproducibility of Results
2.
Article in English | MEDLINE | ID: mdl-35805434

ABSTRACT

Oxidative potential (OP) of particulate matter (PM) is gaining strong interest as a promising health exposure metric. This study investigated OP of a large set of PM10 and PM2.5 samples collected at five urban and background sites near Milan (Italy), one of the largest and most polluted urban areas in Europe, afflicted with high particle levels. OP responses from two acellular assays, based on ascorbic acid (AA) and dithiothreitol (DTT), were combined with atmospheric detailed composition to examine any possible feature in OP with PM size fraction, spatial and seasonal variations. A general association of volume-normalized OP with PM mass was found; this association may be related to the clear seasonality observed, whereby there was higher OP activity in wintertime at all investigated sites. Univariate correlations were used to link OP with the concentrations of the major chemical markers of vehicular and biomass burning emissions. Of the two assays, AA was particularly sensitive towards transition metals in coarse particles released from vehicular traffic. The results obtained confirm that the responses from the two assays and their relationship with atmospheric pollutants are assay- and location-dependent, and that their combination is therefore helpful to singling out the PM redox-active compounds driving its oxidative properties.


Subject(s)
Air Pollutants , Particulate Matter , Air Pollutants/analysis , Ascorbic Acid , Environmental Monitoring/methods , Italy , Oxidation-Reduction , Oxidative Stress , Particle Size , Particulate Matter/analysis , Seasons
3.
Environ Sci Pollut Res Int ; 29(36): 54391-54406, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35297001

ABSTRACT

The concentrations of polycyclic aromatic hydrocarbons (PAHs) and quinones, a subgroup of oxygenated PAHs (oxy-PAHs), were measured in PM2.5 samples collected during warm (May-June 2019) and cold (February-March 2020) seasons in the city of Bologna, Italy. Total PAHs concentration was nearly double in winter (6.58 ± 1.03 ng m-3) compared with spring (3.16 ± 0.53 ng m-3), following the trend of the PM2.5 mass concentration. Molecular diagnostic ratios suggested that, together with traffic, biomass burning was the dominant emission source contributing to the peaks of concentration of PM2.5 registered in the cold season. Quinone level was constant in both seasons, being 1.44 ± 0.24 ng m-3, that may be related to the increased secondary formation during warm season, as confirmed by the higher Σoxy-PAHs/ΣPAHs ratio in spring than in winter. The oxidative potential (OP) of the PM2.5 samples was assessed using acellular dithiothreitol (DTT) and ascorbic acid (AA) assays. The obtained responses showed a strong seasonality, with higher volume-normalized (OPV) values in winter than in spring, i.e., OPVDTT: 0.32 ± 0.15 nmol min-1 m-3 vs. 0.08 ± 0.03 nmol min-1 m-3 and OPVAA: 0.72 ± 0.36 nmol min-1 m-3 vs. 0.28 ± 0.21 nmol min-1 m-3. Both OPVDTT and OPVAA responses were significantly associated with total PAHs, as a general descriptor of redox-active PAH derivatives, associated with co-emission from burning sources or secondary atmospheric oxidation of parent PAHs. Otherwise, only winter OPVDTT responses showed a significant correlation with total Æ©oxy-PAHs concentration.


Subject(s)
Air Pollutants , Polycyclic Aromatic Hydrocarbons , Aerosols , Air Pollutants/analysis , China , Dithiothreitol , Environmental Monitoring , Oxidation-Reduction , Oxidative Stress , Particulate Matter/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Seasons
4.
Chemosphere ; 282: 131024, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34119722

ABSTRACT

Our second generation air sampling drone system, allowing the simultaneous use of four solid phase microextraction (SPME) Arrow and four in-tube extraction (ITEX) units, was employed for collection of atmospheric air samples at different spatial and temporal dimensions. SPME Arrow coated with two types of materials and ITEX with 10% polyacrylonitrile as sorbent were used to give a more comprehensive chemical characterization of the collected air samples. Before field sampling, miniaturized samplers went through quality control and assurance in terms of reproducibility (RSD ≤14.1%, N = 4), equilibrium time (≥10 min), breakthrough volume (1.8 L) and storage time (up to 48 h). 128 air samples were collected under optimal sampling conditions from July to September 2019 at the SMEAR II station and Qvidja farm, Finland. 347 VOCs were identified in the air samples either on-site or in the laboratory by thermal desorption gas chromatography - mass spectrometry, and they were quantified/semiquantified using Partial Least Squares Regression models. Individual models were developed for the different coatings and packing materials using gas phase standards obtained by an automatic permeation system. Average gas phase VOC concentrations ranged from 0.1 (toluene, the SMEAR II station) to 680 ng L-1 (acetone, Qvidja farm). Average VOC concentrations in aerosols ranged from 0.1 (1,4-cyclohexadiene, the SMEAR II station) to 2287 ng L-1 (megastigma-4,6,8-triene, Qvidja farm). Clear differences in results were seen for samples collected at the SMEAR II station and Qvidja farm, between VOC compositions in gas phase and aerosols, and between the sampling site and height.


Subject(s)
Air Pollutants , Volatile Organic Compounds , Acetone , Air Pollutants/analysis , Gas Chromatography-Mass Spectrometry , Reproducibility of Results , Solid Phase Microextraction , Volatile Organic Compounds/analysis
5.
Front Neurosci ; 15: 650540, 2021.
Article in English | MEDLINE | ID: mdl-33994927

ABSTRACT

The measurement of retinal sensitivity at different visual field locations-perimetry-is a fundamental procedure in ophthalmology. The most common technique for this scope, the Standard Automated Perimetry, suffers from several issues that make it less suitable to test specific clinical populations: it can be tedious, it requires motor manual feedback, and requires from the patient high levels of compliance. Previous studies attempted to create user-friendlier alternatives to Standard Automated Perimetry by employing eye movements reaction times as a substitute for manual responses while keeping the fixed-grid stimuli presentation typical of Standard Automated Perimetry. This approach, however, does not take advantage of the high spatial and temporal resolution enabled by the use of eye-tracking. In this study, we introduce a novel eye-tracking method to perform high-resolution perimetry. This method is based on the continuous gaze-tracking of a stimulus moving along a pseudo-random walk interleaved with saccadic jumps. We then propose two computational methods to obtain visual field maps from the continuous gaze-tracking data: the first is based on the spatio-temporal integration of ocular positional deviations using the threshold free cluster enhancement (TFCE) algorithm; the second is based on using simulated visual field defects to train a deep recurrent neural network (RNN). These two methods have complementary qualities: the TFCE is neurophysiologically plausible and its output significantly correlates with Standard Automated Perimetry performed with the Humphrey Field Analyzer, while the RNN accuracy significantly outperformed the TFCE in reconstructing the simulated scotomas but did not translate as well to the clinical data from glaucoma patients. While both of these methods require further optimization, they show the potential for a more patient-friendly alternative to Standard Automated Perimetry.

6.
Article in English | MEDLINE | ID: mdl-33921463

ABSTRACT

This paper describes the in situ monitoring of indoor air quality (IAQ) in two dwellings, using low-cost IAQ sensors to provide high-density temporal and spatial data. IAQ measurements were conducted over 2-week periods in the kitchen and bedroom of each home during the winter, spring, and summer seasons, characterized by different outside parameters, that were simultaneously measured. The mean indoor PM2.5 concentrations were about 15 µg m-3 in winter, they dropped to values close to 10 µg m-3 in spring and increased to levels of about 13 µg m-3 in summer. During the winter campaign, indoor PM2.5 was found mainly associated with particle penetration inside the rooms from outdoors, because of the high outdoor PM2.5 levels in the season. Such pollution winter episodes occur frequently in the study region, due to the combined contributions of strong anthropogenic emissions and stable atmospheric conditions. The concentrations of indoor volatile organic compounds (VOCs) and CO2 increased with the number of occupants (humans and pets), as likely associated with consequent higher emissions through breathing and metabolic processes. They also varied with occupants' daily activities, like cooking and cleaning. Critic CO2 levels above the limit of 1000 ppm were observed in spring campaign, in the weeks close to the end of the COVID-19 quarantine, likely associated with the increased time that the occupants spent at home.


Subject(s)
Air Pollutants , Air Pollution, Indoor , COVID-19 , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Communicable Disease Control , Environmental Monitoring , Humans , Italy , Particulate Matter/analysis , SARS-CoV-2 , Seasons
7.
Front Aging Neurosci ; 13: 744139, 2021.
Article in English | MEDLINE | ID: mdl-35095465

ABSTRACT

In glaucoma participants, both structural and functional brain changes have been observed, but we still have insufficient understanding of how these changes also affect the integrity of cortical functional networks, and how these changes relate to visual function. This is relevant, as functional network integrity may affect the applicability of future treatments, as well as the options for rehabilitation or training. Here, we compare global and local functional connectivity in local and global brain networks between glaucoma and control participants. Moreover, we study the relationship between functional connectivity and visual field (VF) loss. For our study, 20 subjects with primary open-angle glaucoma (POAG) and 24 age-similar healthy participants were recruited to undergo an ophthalmic assessment followed by two resting-state (RS) (f)MRI scans. For each scan and for each group, the ROIs with eigenvector centrality (EC) values higher than the 95th percentile were considered the most central brain regions ("hubs"). Hubs for which we found a significant difference in EC in both scans between glaucoma and healthy participants were considered to provide evidence for network changes. In addition, we tested the notion that a brain region's hub function in POAG might relate to the severity of a participant's VF defect, irrespective of which eye contributed mostly to this. To determine this, for each participant, eye-independent scores were derived for: (1) sensitivity of the worse eye - indicating disease severity, (2) sensitivity of both eyes combined - with one eye potentially compensating for loss in the other, or (3) difference in eye sensitivity - potentially requiring additional network interactions. By correlating each of these VF scores and the EC values, we assessed whether VF defects could be associated with centrality alterations in POAG. Our results show that no functional connectivity disruptions were found at the global brain level in POAG participants. This indicates that in glaucoma global brain network communication is preserved. Furthermore, for the Lingual Gyrus, identified as a brain hub, we found a positive correlation between the EC value and the VF sensitivity of both eyes combined. The fact that reduced local network functioning is associated with reduced binocular VF sensitivity suggests the presence of local brain reorganization that has a bearing on functional visual abilities.

8.
Transl Vis Sci Technol ; 9(8): 31, 2020 07.
Article in English | MEDLINE | ID: mdl-32855877

ABSTRACT

Purpose: To explore the feasibility of using various easy-to-obtain biomarkers to monitor non-compliance (measurement error) during visual field assessments. Methods: Forty-two healthy adults (42 eyes) and seven glaucoma patients (14 eyes) underwent two same-day visual field assessments. An ordinary webcam was used to compute seven potential biomarkers of task compliance, based primarily on eye gaze, head pose, and facial expression. We quantified the association between each biomarker and measurement error, as defined by (1) test-retest differences in overall test scores (mean sensitivity), and (2) failures to respond to visible stimuli on individual trials (stimuli -3 dB or more brighter than threshold). Results: In healthy eyes, three of the seven biomarkers were significantly associated with overall (test-retest) measurement error (P = 0.003-0.007), and at least two others exhibited possible trends (P = 0.052-0.060). The weighted linear sum of all seven biomarkers was associated with overall measurement error, in both healthy eyes (r = 0.51, P < 0.001) and patients (r = 0.65, P < 0.001). Five biomarkers were each associated with failures to respond to visible stimuli on individual trials (all P < 0.001). Conclusions: Inexpensive, autonomous measures of task compliance are associated with measurement error in visual field assessments, in terms of both the overall reliability of a test and failures to respond on particular trials ("lapses"). This could be helpful for identifying low-quality assessments and for improving assessment techniques (e.g., by discounting suspect responses or by automatically triggering comfort breaks or encouragement). Translational Relevance: This study explores a potential way of improving the reliability of visual field assessments, a crucial but notoriously unreliable clinical measure.


Subject(s)
Glaucoma , Visual Fields , Adult , Glaucoma/diagnosis , Humans , Reproducibility of Results , Touch , Visual Field Tests
9.
Ophthalmic Physiol Opt ; 40(1): 35-46, 2020 01.
Article in English | MEDLINE | ID: mdl-31879994

ABSTRACT

PURPOSE: To describe, refine, evaluate, and provide normative control data for two freely available tablet-based tests of real-world visual function, using a cohort of young, normally-sighted adults. METHODS: Fifty young (18-40 years), normally-sighted adults completed tablet-based assessments of (1) face discrimination and (2) visual search. Each test was performed twice, to assess test-retest repeatability. Post-hoc analyses were performed to determine the number of trials required to obtain stable estimates of performance. Distributions were fitted to the normative data to determine the 99% population-boundary for normally sighted observers. Participants were also asked to rate their comprehension of each test. RESULTS: Both tests provided stable estimates in around 20 trials (~1-4 min), with only a further reduction of 14%-17% in the 95% Coefficient of Repeatability (CoR95 ) when an additional 40 trials were included. When using only ~20 trials: median durations for the first run of each test were 191 s (Faces) and 51 s (Search); test-retest CoR95 were 0.27 d (Faces) and 0.84 s (Search); and normative 99% population-limits were 3.50 d (Faces) and 3.1 s (Search). No participants exhibited any difficulties completing either test (100% completion rate), and ratings of task-understanding were high (Faces: 9.6 out of 10; Search: 9.7 out of 10). CONCLUSIONS: This preliminary assessment indicated that both tablet-based tests are able to provide simple, quick, and easy-to-administer measures of real-world visual function in normally-sighted young adults. Further work is required to assess their accuracy and utility in older people and individuals with visual impairment. Potential applications are discussed, including their use in clinic waiting rooms, and as an objective complement to Patient Reported Outcome Measures (PROMs).


Subject(s)
Contrast Sensitivity/physiology , Emmetropia/physiology , Vision, Low/physiopathology , Vision, Ocular/physiology , Adolescent , Adult , Female , Humans , Male , Reproducibility of Results , Vision Tests , Young Adult
10.
Cereb Cortex ; 28(5): 1749-1759, 2018 05 01.
Article in English | MEDLINE | ID: mdl-28444373

ABSTRACT

Cognitive reserve (CR) is the phenomenon where older adults with more cognitively stimulating environments show less age-related cognitive decline. The right-lateralized fronto-parietal network has been proposed to significantly contribute to CR and visual attention in ageing. In this study we tested whether plasticity of this network may be harnessed in ageing.We assessed CR and parameters of visual attention capacity in older adults. Transcranial direct current stimulation (tDCS) was employed to increase right fronto-parietal activity during a lateralized whole-report task. At baseline, older adults with greater CR showed a stronger hemifield asymmetry in processing speed towards the left visual-field, indicative of stronger involvement of the right hemisphere in these individuals. Correspondingly, processing speed improved during right prefrontal tDCS. Older adults with lower levels of CR showed tDCS-related improvements in processing speed in the left but not right hemifield: thus tDCS temporarily altered their processing speed asymmetry to resemble that of their high reserve peers.The finding that stronger right hemisphere involvement is related to CR supports Robertson's theory. Furthermore, preserved plasticity within the right prefrontal cortex in older adults suggests this is a viable target area to improve visual processing speed, a hallmark of age-related decline.


Subject(s)
Aging , Brain/physiology , Cognitive Reserve/physiology , Functional Laterality/physiology , Neural Pathways/physiology , Neuronal Plasticity/physiology , Aged , Aged, 80 and over , Attention/physiology , Electroencephalography , Female , Humans , Male , Neuropsychological Tests , Photic Stimulation , Surveys and Questionnaires , Transcranial Direct Current Stimulation
SELECTION OF CITATIONS
SEARCH DETAIL
...