Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(8): 11035-11042, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38377460

ABSTRACT

Core-only InAs nanowires (NWs) remain of continuing interest for application in modern optical and electrical devices. In this paper, we utilize the II-VI semiconductor CdSe as a shell for III-V InAs NWs to protect the electron transport channel in the InAs core from surface effects. This unique material configuration offers both a small lattice mismatch between InAs and CdSe and a pronounced electronic confinement in the core with type-I band alignment at the interface between both materials. Under optimized growth conditions, a smooth interface between the core and shell is obtained. Atom probe tomography (APT) measurements confirm substantial diffusion of In into the shell, forming a remote n-type doping of CdSe. Moreover, field-effect transistors (FETs) are fabricated, and the electron transport characteristics in these devices is investigated. Finally, band structure simulations are performed and confirm the presence of an electron transport channel in the InAs core that, at higher gate voltages, extends into the CdSe shell region. These results provide a promising basis toward the application of hybrid III-V/II-VI core/shell nanowires in modern electronics.

2.
ACS Nano ; 16(9): 14582-14589, 2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36095839

ABSTRACT

Isolated impurity states in epitaxially grown semiconductor systems possess important radiative features such as distinct wavelength emission with a very short radiative lifetime and low inhomogeneous broadening, which make them promising for the generation of indistinguishable single photons. In this study, we investigate chlorine-doped ZnSe/ZnMgSe quantum well (QW) nanopillar (NP) structures as a highly efficient solid-state single-photon source operating at cryogenic temperatures. We show that single photons are generated due to the radiative recombination of excitons bound to neutral Cl atoms in ZnSe QW and the energy of the emitted photon can be tuned from about 2.85 down to 2.82 eV with ZnSe well width increase from 2.7 to 4.7 nm. Following the developed advanced technology, we fabricate NPs with a diameter of about 250 nm using a combination of dry and wet-chemical etching of epitaxially grown ZnSe/ZnMgSe QW structures. The remaining resist mask serves as a spherical- or cylindrical-shaped solid immersion lens on top of NPs and leads to the emission intensity enhancement by up to an order of magnitude in comparison to the pillars without any lenses. NPs with spherical-shaped lenses show the highest emission intensity values. The clear photon-antibunching effect is confirmed by the measured value of the second-order correlation function at a zero time delay of 0.14. The developed single-photon sources are suitable for integration into scalable photonic circuits.

3.
Nanotechnology ; 28(44): 445202, 2017 Nov 03.
Article in English | MEDLINE | ID: mdl-28840851

ABSTRACT

Low-temperature transport in nanowires is accompanied by phase-coherent effects, which are observed as modulation of the conductance in an external magnetic field. In the GaAs/InAs core/shell nanowires investigated here, these are h/e flux periodic oscillations in a magnetic field aligned parallel to the nanowire axis and aperiodic universal conductance fluctuations in a field aligned perpendicularly to the nanowire axis. Both electron interference effects are used to analyse the phase coherence of the system. Temperature-dependent measurements are carried out, in order to derive the phase coherence lengths in the cross-sectional plane as well as along the nanowire sidewalls. It is found that these values show a strong anisotropy, which can be explained by the crystal structure of the GaAs/InAs core/shell nanowire. For nanowires with a radius as low as 45 nm, flux periodic oscillations were observed up to a temperature of 55 K.

4.
Sci Rep ; 6: 24573, 2016 Apr 19.
Article in English | MEDLINE | ID: mdl-27091000

ABSTRACT

We study the impact of the direction of magnetic flux on the electron motion in GaAs/InAs core/shell nanowires. At small tilt angles, when the magnetic field is aligned nearly parallel to the nanowire axis, we observe Aharonov-Bohm type h/e flux periodic magnetoconductance oscillations. These are attributed to transport via angular momentum states, formed by electron waves within the InAs shell. With increasing tilt of the nanowire in the magnetic field, the flux periodic magnetoconductance oscillations disappear. Universal conductance fluctuations are observed for all tilt angles, however with increasing amplitudes for large tilt angles. We record this evolution of the electron propagation from a circling motion around the core to a diffusive transport through scattering loops and give explanations for the observed different transport regimes separated by the magnetic field orientation.

5.
Nat Commun ; 6: 8816, 2015 Nov 17.
Article in English | MEDLINE | ID: mdl-26572278

ABSTRACT

Three-dimensional (3D) topological insulators are a new state of quantum matter, which exhibits both a bulk band structure with an insulating energy gap as well as metallic spin-polarized Dirac fermion states when interfaced with a topologically trivial material. There have been various attempts to tune the Dirac point to a desired energetic position for exploring its unusual quantum properties. Here we show a direct experimental proof by angle-resolved photoemission of the realization of a vertical topological p-n junction made of a heterostructure of two different binary 3D TI materials Bi2Te3 and Sb2Te3 epitaxially grown on Si(111). We demonstrate that the chemical potential is tunable by about 200 meV when decreasing the upper Sb2Te3 layer thickness from 25 to 6 quintuple layers without applying any external bias. These results make it realistic to observe the topological exciton condensate and pave the way for exploring other exotic quantum phenomena in the near future.

SELECTION OF CITATIONS
SEARCH DETAIL
...