Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 331: 117339, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36669313

ABSTRACT

Environmentally sustainable remediation is needed to protect freshwater resources which are deteriorating due to severe industrial, mining, and agricultural activities. Treatment by floating wetlands could be a sustainable solution to remediate water bodies. The study aimed to examine the effects of Cd on Phragmites australis and Iris pseudacorus growth (height, biomass, root length and chlorophyll contents), anatomy, Cd accumulation in their biomass and their ability to remove Cd, N and P. Seedlings of both plants were grown in a greenhouse for 50 days in artificially prepared stormwater amended with Cd, N, and P. The treatments were: control (Cd _0), Cd_1, Cd_2, and Cd_4 mg L-1. N and P contents were 4 mg L-1 and 1.8 mg L-1, respectively. In the case of P. australis, the maximum plant height, root length, and total dry biomass production was increased in medium dose (Cd_2) treatment while the chlorophyll index (CCI) increased in high dose (Cd_4) treatment as compared to all treatments. For I. pseudacorus, the maximum plant height and total dry biomass production, root length and CCI values were improved in low dose (Cd_1) and high dose (Cd_4) treatments, respectively among all treatments. Results showed that P. australis accumulated 10.94-1821.59 µg · (0.05 m2)-1 in roots and 2.45-334.65 µg · (0.05 m2)-1 in shoots under Cd_0, Cd_1 and Cd_4 treatments. I. pseudacorus accumulated the highest Cd in roots up to 5.84-4900 µg · (0.05 m2)-1 and 3.40-609 µg · (0.05 m2)-1 in shoots under Cd_0, Cd_1 and Cd_4 treatments. The translocation factor was observed as <1 and the bioconcentration factor >1 for both species, which indicates their phytostabilization potential. Results demonstrate that P. australis and I. pseudacorus are suitable for use in floating wetlands to remediate contaminated sites.


Subject(s)
Cadmium , Iris Plant , Cadmium/pharmacology , Wetlands , Biodegradation, Environmental , Plants , Poaceae , Biomass , Plant Roots/chemistry
2.
Sensors (Basel) ; 22(20)2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36298398

ABSTRACT

Dredged material dumping is an activity that causes some of the greatest changes in coastal waters. It results in the need to regularly monitor the properties of seawater related to water quality. In this study, we present the first wide-ranging attempt to correlate seawater turbidity and suspended particulate matter (SPM) concentrations within dumping sites and adjacent waters on the basis of in situ measurements. In the years 2019-2020, we examined four dumping sites, namely Darlowo, Gdynia, Gdansk, and DCT, located in Polish coastal waters of the Baltic Sea, in the course of four measurement campaigns conducted in the spring, summer, autumn, and winter. The measurements were conducted using a turbidity sensor to determine the turbidity, in formazin turbidity units (FTU), a spectrophotometer to determine the concentrations of nutrients (total phosphorus (P-tot), phosphate phosphorus (P-PO4-3), total nitrogen (N-tot), ammonium nitrogen (N-NH4+), and nitrate nitrogen (N-NO3-)), as well as glass microfiber filters to determine the concentrations of SPM. The analysis of the relationship between the turbidity and SPM within the dumping sites in comparison to reference points showed that the dumping sites are very complex waters and that the issue must be approached locally. The highest turbidity values were registered in the spring, and they correlated linearly with the SPM concentrations (R2 = 0.69). Moreover, we performed a statistical cluster analysis to illustrate the similarities between sampling points in the four dumpsites based on nutrient concentrations. We conclude that the influence of the dumping sites on the local bio-optical and chemical properties significantly exceeds their borders and spreads to the adjacent waters. Nutrient concentrations in many cases exceeded the legal policy limits.


Subject(s)
Ammonium Compounds , Water Pollutants, Chemical , Particulate Matter/analysis , Environmental Monitoring/methods , Nitrates , Nitrogen/analysis , Phosphorus/analysis , Phosphates/analysis , Water Pollutants, Chemical/analysis
3.
PeerJ ; 8: e8789, 2020.
Article in English | MEDLINE | ID: mdl-32219029

ABSTRACT

BACKGROUND: The Puck commune is one of the largest agricultural regions in the Pomeranian Voivodship that due to the pollution of the coastal zone negatively affects the functioning of the Puck Bay, including health of its inhabitants, and causes decrease in tourism as well as in overall economic value of the region. The objective of the undertaken study was to assess the extent of risk to the environment posed by the pesticides used in agricultural production in the coastal area of the Puck commune. METHODS: The study focused on organochlorine insecticides (DDT and its metabolites: α, ß, ϒ, δ-HCH, aldrin, dieldrin, endrin, isodrine), glyphosate and its metabolite AMPA, and 309 active substances used as pesticides. Analyses were carried out using GC-MS, GC-MS/MS and LC-MS/MS techniques. The undertaken novel approach included "tracking" of a large number of substances in multiple environmental matrices (surface water, groundwater, seawater, soil, sediment and fish), along with examination of their transport routes from the pesticides application locality to the Puck Bay. RESULTS: Glyphosate and its metabolite AMPA, anthraquinone, boscalid, chlorpyrifos-ethyl, dimethachlor, diflufenican, difenoconazole, epoxiconazole, fluopicolide and metazachlor were found in soil samples and surface water samples collected from drainage ditches surrounding the studied agricultural plots. In the samples of seawater and fish taken from the Puck Bay no studied pesticides were found.

4.
PeerJ ; 8: e8396, 2020.
Article in English | MEDLINE | ID: mdl-31938583

ABSTRACT

BACKGROUND: In order to counteract the eutrophication of waterways and reservoirs, a basic risk assessment of phosphorus (P) losses in the surface runoff from agricultural land should be included in water management plans. A new method has been developed to assess the risk of P losses by estimating the degree of P saturation (DPS) based on the P concentration of the water extract water-soluble P. METHODS: The risk of P losses in surface runoff from agricultural land in the Puck Commune on the Baltic Sea Coast was assessed with the DPS method. The results were compared to an agronomic interpretation of the soil test P concentration (STP). Research was conducted on mineral and organic soils from 50 and 11 separate agricultural plots with a total area of 133.82 and 37.23 ha, respectively. Phosphorus was extracted from the collected samples using distilled water on all soil samples, acid ammonium lactate on mineral soils, and an extract of 0.5 mol HCl·dm-3 on organic soils. The organic matter content and pH values were also determined. The results of the P content in the water extracted from the soils were converted into DPS values, which were then classified by appropriate limit intervals. RESULTS AND DISCUSSION: There was a high risk of P losses from the soil via surface runoff in 96.7% of the agricultural parcels tested (96% of plots with mineral soils and 100% of plots with organic soils). Simultaneously, a large deficiency of plant-available P was found in soils from 62% of agricultural plots. These data indicate that the assessment of P concentration in soils made on the basis of an environmental soil P test conflicts with the assessment made based on STP and create a cognitive dissonance. The risk level of P losses through surface runoff from the analyzed plots as determined by the DPS indicator is uncertain. This uncertainty is increased as the DPS index is not correlated with other significant factors in P runoff losses, such as the type of crop and area inclination.

5.
Sci Total Environ ; 550: 806-819, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26849344

ABSTRACT

The anthropogenic pollution along the coastline of the eastern Gulf of Finland was studied through a range of methods, including analyses of metal contamination in water, surface sediments, accumulated algal biomass and its correlation with resistant microbiota. According to concentrations, the main pollutants in water were copper and manganese. Influence of Nuclear Power Plant was remarkable in adjacent areas and was expressed in high concentrations of molybdenum, nickel, copper and other elements in the water. Relatively high concentrations of copper, lead and zinc were found in sediments. Microbial tolerance appeared to be correlated with the concentration of the metals in sediments. Higher tolerance levels were found in sediment samples from more polluted stations. Macroalgae, which were massively developed in the coastal zone, had shown high level of metal bioaccumulation. Analyses of carbon, nitrogen and phosphorus content of algal tissues allowed the estimation of additional nutrient loading from accumulated decaying algal biomass on the coastal zone of the eastern Gulf of Finland. Mass development of algae in coastal area may contribute to accumulation of organic matter and associated metals. In our study the highest metal concentrations in sediments were found at the sites with dense and continuous layer of fresh and decaying macroalgal biomass, accompanied by hypoxic conditions. Also our study has shown that accumulated biomass may be a significant source of nutrients in the coastal ecosystem.


Subject(s)
Environmental Monitoring , Geologic Sediments/chemistry , Metals/analysis , Nitrogen/analysis , Phosphorus/analysis , Water Pollutants, Chemical/analysis , Finland , Microbiota , Seawater , Seaweed/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...