Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
ACS Appl Electron Mater ; 4(8): 3780-3785, 2022 Aug 23.
Article in English | MEDLINE | ID: mdl-36035967

ABSTRACT

Beryllium has been considered a potential alternative to magnesium as a p-type dopant in GaN, but attempts to produce conductive p-GaN:Be have not been successful. Photoluminescence studies have repeatedly shown Be to have an acceptor level shallower than that of Mg, but deep Be defects and other compensating defects render most GaN:Be materials n-type or semi-insulating at best. Previous reports use molecular beam epitaxy or ion implantation to dope GaN with Be, almost exclusively. Due to the high toxicity of Be organometallics, reports of GaN:Be by metal-organic chemical vapor deposition (MOCVD) have been largely absent. Here, we report a systematic study of growth of GaN:Be by MOCVD. All doped samples show the established UV band and yellow luminescence signature of GaN:Be, and growth conditions resulting in high-quality GaN with stable Be incorporation were established. Our results show that the MOCVD growth technique allows for Be incorporation pathways that have not been possible with previous growth methodologies and is highly promising in achieving p-type conductivity in GaN:Be.

2.
Nanoscale ; 10(43): 20296-20305, 2018 Nov 08.
Article in English | MEDLINE | ID: mdl-30374504

ABSTRACT

Low-cost, less-toxic, and abundantly-produced Ge1-xSnx alloys are an interesting class of narrow energy-gap semiconductors that received noteworthy interest in optical technologies. Incorporation of α-Sn into Ge results in an indirect-to-direct bandgap crossover significantly improving light absorption and emission relative to indirect-gap Ge. However, the narrow energy-gaps reported for bulk Ge1-xSnx alloys have become a major impediment for their widespread application in optoelectronics. Herein, we report the first colloidal synthesis of Ge1-xSnx alloy quantum dots (QDs) with a narrow size dispersity (3.3 ± 0.5-5.9 ± 0.8 nm), a wide range of Sn compositions (0-20.6%), and composition-tunable energy-gaps and near-infrared (IR) photoluminescence (PL). The structural analysis of the alloy QDs indicates linear expansion of the cubic Ge lattice with increasing Sn, suggesting the formation of strain-free nanoalloys. The successful incorporation of α-Sn into crystalline Ge has been confirmed by electron microscopy, which suggests the homogeneous solid solution behavior of QDs. The quantum confinement effects have resulted in energy gaps that are significantly blue-shifted from bulk Ge for the Ge1-xSnx alloy QDs with composition-tunable absorption onsets (1.72-0.84 eV for x = 1.5-20.6%) and PL peaks (1.62-1.31 eV for x = 1.5-5.6%). Time-resolved PL (TRPL) spectroscopy revealed microsecond and nanosecond timescale decays at 15 K and 295 K, respectively, owing to the radiative recombination of dark and bright excitons as well as the interplay of surface traps and core electronic states. Realization of low-to-non-toxic and silicon-compatible Ge1-xSnx QDs with composition-tunable near-IR PL allows the unprecedented expansion of direct-gap Group IV semiconductors to a wide range of biomedical and advanced technological studies.

3.
Chem Commun (Camb) ; 52(78): 11665-11668, 2016 Sep 22.
Article in English | MEDLINE | ID: mdl-27709150

ABSTRACT

Ge1-xSnx alloy quantum dots (QDs) were synthesized with sizes ranging from 1-3 nm exhibiting visible orange-red photoluminescence. Composition dependent optical properties were characterized and supported by theoretical calculations. Structural analysis suggests the QDs are diamond cubic phase, characteristic of Ge1-xSnx thin films and nanocrystals (NCs) reported to date.

4.
J Phys Chem Lett ; 7(17): 3295-301, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-27513723

ABSTRACT

Optical transition energies and carrier dynamics in colloidally synthesized 2.0 ± 0.8 nm Ge1-xSnx quantum dots (x = 0.055-0.236) having visible luminescence were investigated using steady-state and time-resolved photoluminescence (PL) spectroscopy supported by first-principles calculations. By changing Sn content from x = 0.055 to 0.236, experimentally determined HOMO-LUMO gap at 15 K was tuned from 1.88 to 1.61 eV. Considering the size and compositional variations, these values were consistent with theoretically calculated ones. At 15 K, time-resolved PL revealed slow decay of luminescence (3-27 µs), likely due to the recombination of spin-forbidden dark excitons and recombination of carriers trapped at surface states. Increasing Sn concentration to 23.6% led to 1 order of magnitude faster recombination. At 295 K, PL decays were 3 orders of magnitude faster (9-28 ns) owing to the thermal activation of bright excitons and carrier detrapping from surface states.

5.
Nanoscale Res Lett ; 6: 502, 2011 Aug 19.
Article in English | MEDLINE | ID: mdl-21854613

ABSTRACT

It is widely accepted that low dimensionality of semiconductor heterostructures and nanostructures can significantly improve their thermoelectric efficiency. However, what is less well understood is the precise role of electronic and lattice transport coefficients in the improvement. We differentiate and analyze the electronic and lattice contributions to the enhancement by using a nearly parameter-free theory of the thermoelectric properties of semiconductor nanowires. By combining molecular dynamics, density functional theory, and Boltzmann transport theory methods, we provide a complete picture for the competing factors of thermoelectric figure of merit. As an example, we study the thermoelectric properties of ZnO and Si nanowires. We find that the figure of merit can be increased as much as 30 times in 8-Å-diameter ZnO nanowires and 20 times in 12-Å-diameter Si nanowires, compared with the bulk. Decoupling of thermoelectric contributions reveals that the reduction of lattice thermal conductivity is the predominant factor in the improvement of thermoelectric properties in nanowires. While the lattice contribution to the efficiency enhancement consistently becomes larger with decreasing size of nanowires, the electronic contribution is relatively small in ZnO and disadvantageous in Si.

6.
J Am Chem Soc ; 131(14): 5285-93, 2009 Apr 15.
Article in English | MEDLINE | ID: mdl-19351206

ABSTRACT

The partial transformation of ionic nanocrystals through cation exchange has been used to synthesize nanocrystal heterostructures. We demonstrate that the selectivity for cation exchange to take place at different facets of the nanocrystal plays an important role in determining the resulting morphology of the binary heterostructure. In the case of copper(I) (Cu(+)) cation exchange in cadmium sulfide (CdS) nanorods, the reaction starts preferentially at the ends of the nanorods such that copper sulfide (Cu(2)S) grows inward from either end. The resulting morphology is very different from the striped pattern obtained in our previous studies of silver(I) (Ag(+)) exchange in CdS nanorods where nonselective nucleation of silver sulfide (Ag(2)S) occurs (Robinson, R. D.; Sadtler, B.; Demchenko, D. O.; Erdonmez, C. K.; Wang, L.-W.; Alivisatos, A. P. Science 2007, 317, 355-358). From interface formation energies calculated for several models of epitaxial connections between CdS and Cu(2)S or Ag(2)S, we infer the relative stability of each interface during the nucleation and growth of Cu(2)S or Ag(2)S within the CdS nanorods. The epitaxial attachments of Cu(2)S to the end facets of CdS nanorods minimize the formation energy, making these interfaces stable throughout the exchange reaction. Additionally, as the two end facets of wurtzite CdS nanorods are crystallographically nonequivalent, asymmetric heterostructures can be produced.

7.
ACS Nano ; 2(4): 627-36, 2008 Apr.
Article in English | MEDLINE | ID: mdl-19206592

ABSTRACT

The mechanism of formation of recently fabricated CdS-Ag(2)S nanorod superlattices is considered and their elastic properties are predicted theoretically based on experimental structural data. We consider different possible mechanisms for the spontaneous ordering observed in these 1D nanostructures, such as diffusion-limited growth and ordering due to epitaxial strain. A simplified model suggests that diffusion-limited growth partially contributes to the observed ordering, but cannot account for the full extent of the ordering alone. The elastic properties of bulk Ag(2)S are predicted using a first principles method and are fed into a classical valence force field (VFF) model of the nanostructure. The VFF results show significant repulsion between Ag(2)S segments, strongly suggesting that the interplay between the chemical interface energy and strain due to the lattice mismatch between the two materials drives the spontaneous pattern formation.


Subject(s)
Cadmium Compounds/chemistry , Crystallization/methods , Models, Chemical , Models, Molecular , Nanotubes/chemistry , Nanotubes/ultrastructure , Selenium Compounds/chemistry , Silver Compounds/chemistry , Computer Simulation , Elastic Modulus , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Nanotechnology/methods , Particle Size , Surface Properties
8.
Nano Lett ; 7(10): 3219-22, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17887719

ABSTRACT

The electronic structure of nanowires in contact with metallic electrodes of experimentally relevant sizes is calculated by incorporating the electrostatic image potential into the atomistic single particle Schrödinger equation. We show that the presence of an electrode produces localized electron/hole states near the electrode. We found a strong nanowire size dependence of this localization effect. We calculate several electrode/nanowire geometries, with varying contact depths and nanowire radii. We demonstrate the change in the band gap of up to 0.5 eV in 3 nm diameter CdSe nanowires and calculate the magnitude of the applied electric field necessary to overcome the localization.


Subject(s)
Cadmium Compounds/chemistry , Microelectrodes , Models, Chemical , Nanostructures/chemistry , Selenium Compounds/chemistry , Computer Simulation , Electromagnetic Fields , Electrons , Materials Testing , Metals/chemistry
9.
Science ; 317(5836): 355-8, 2007 Jul 20.
Article in English | MEDLINE | ID: mdl-17641197

ABSTRACT

Lattice-mismatch strains are widely known to control nanoscale pattern formation in heteroepitaxy, but such effects have not been exploited in colloidal nanocrystal growth. We demonstrate a colloidal route to synthesizing CdS-Ag(2)S nanorod superlattices through partial cation exchange. Strain induces the spontaneous formation of periodic structures. Ab initio calculations of the interfacial energy and modeling of strain energies show that these forces drive the self-organization of the superlattices. The nanorod superlattices exhibit high stability against ripening and phase mixing. These materials are tunable near-infrared emitters with potential applications as nanometer-scale optoelectronic devices.

10.
Nano Lett ; 7(8): 2377-82, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17645365

ABSTRACT

Although ZnO and ZnS are abundant, stable, and environmentally benign, their band gap energies (3.44, 3.72 eV, respectively) are too large for optimal photovoltaic efficiency. By using band-corrected pseudopotential density functional theory calculations, we study how the band gap, optical absorption, and carrier localization can be controlled by forming quantum-well-like and nanowire-based heterostructures of ZnO/ZnS and ZnO/ZnTe. In the case of ZnO/ZnS core/shell nanowires, which can be synthesized using existing methods, we obtain a band gap of 2.07 eV, which corresponds to a Shockley-Quiesser efficiency limit of 23%. On the basis of these nanowire results, we propose that ZnO/ZnS core/shell nanowires can be used as photovoltaic devices with organic polymer semiconductors as p-channel contacts.


Subject(s)
Electric Power Supplies , Models, Chemical , Models, Molecular , Nanostructures/chemistry , Nanotechnology/methods , Photochemistry/methods , Tellurium/chemistry , Zinc Oxide/chemistry , Computer Simulation , Electromagnetic Fields , Light , Nanostructures/radiation effects , Nanostructures/ultrastructure , Particle Size , Semiconductors , Tellurium/radiation effects , Zinc Oxide/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...