Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Mater Chem B ; 2(19): 2861-2867, 2014 May 21.
Article in English | MEDLINE | ID: mdl-32261480

ABSTRACT

Chemically modified electrodes are widely employed in electroanalytical chemistry and an important goal is to strongly anchor redox mediators on the electrode surface. In this work, indium tin oxide (ITO) electrodes have been coated with PEDOT:PSS that has been ferrocene-functionalized, by a two-step procedure consisting of the electrodeposition of PEDOT-N3 followed by copper-catalyzed azide-alkyne cycloaddition of ethynylferrocene. The coated electrodes have been characterized by XPS, showing successful ferrocene immobilization, by AFM, and by cyclic voltammetry (CV), which is dominated by the stable and highly reversible response of ferrocene. The electrocatalytical performance of the device is assessed by analyzing 3,4-dihydroxyphenyl ethylamine, also commonly known as dopamine (DA). The sensor presents a linear range between 0.01 and 0.9 mM, a mean sensitivity of 196 mA M-1 cm-2 and a limit of detection (LoD) of 1 µM.

2.
Adv Mater ; 25(1): 103-7, 2013 Jan 04.
Article in English | MEDLINE | ID: mdl-23027594

ABSTRACT

An organic ultralow voltage field effect transistor for DNA hybridization detection is presented. The transduction mechanism is based on a field-effect modulation due to the electrical charge of the oligonucleotides, so label-free detection can be performed. The device shows a sub-nanometer detection limit and unprecedented selectivity with respect to single nucleotide polymorphism.


Subject(s)
DNA/analysis , Electricity , Organic Chemicals/chemistry , Transistors, Electronic , DNA/chemistry , Electric Conductivity , Nucleic Acid Hybridization
SELECTION OF CITATIONS
SEARCH DETAIL
...