Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 11(16): 14970-14979, 2019 Apr 24.
Article in English | MEDLINE | ID: mdl-30932468

ABSTRACT

The small size of colloidal nanocrystal quantum dots (QDs) leads to a variety of unique optical properties that are well-suited to nanophotonics, including bright, tunable photoluminescence (PL). However, exploring the properties of solid QD assemblies at the nanoscale has proven challenging because of the limitations in the nanoscale QD patterning methods. Generally, the precise placement of QD solids is difficult to achieve, especially for tall structures with multiple QD layers, and when it is achieved the patterns often cannot withstand the further processing steps required for final device construction. Direct electron beam lithography of QDs has emerged as a straightforward patterning process that does not require ligand exchange and results in structures that retain bright PL. Here, we demonstrate that direct patterning QD films on substrates treated with a self-assembled monolayer of octadecyltrichlorosilane allows us to create feature sizes as thin as 30 nm with heights of multiple layers and characterize the pattern resolution, robustness, and placement accuracy. These structures withstand sonication in a variety of solvents, and the structures are placed within 20 nm of their intended location nearly 100% of the time. We further show how this patterning method can be applied to nanophotonics by measuring the complex refractive index of the QD materials to model the absorption and scattering cross sections of QD structures of various sizes and shapes. These simulations reveal that edge effects arising from the finite shape of the QD nanostructure lead to substantial absorption enhancement when compared to an equivalent volume region taken from a continuous QD film. Finally, we explore more complex structures by patterning QD arrays, multilayer QD structures, and QD disks inside plasmonic resonators.

2.
Nat Commun ; 10(1): 1156, 2019 03 11.
Article in English | MEDLINE | ID: mdl-30858452

ABSTRACT

Organic photovoltaic cells are partiuclarly sensitive to exciton harvesting and are thus, a useful platform for the characterization of exciton diffusion. While device photocurrent spectroscopy can be used to extract the exciton diffusion length, this method is frequently limited by unknown interfacial recombination losses. We resolve this limitation and demonstrate a general, device-based photocurrent-ratio measurement to extract the intrinsic diffusion length. Since interfacial losses are not active layer specific, a ratio of the donor- and acceptor-material internal quantum efficiencies cancels this quantity. We further show that this measurement permits extraction of additional device-relevant information regarding exciton relaxation and charge separation processes. The generality of this method is demonstrated by measuring exciton transport for both luminescent and dark materials, as well as for small molecule and polymer active materials and semiconductor quantum dots. Thus, we demonstrate a broadly applicable device-based methodology to probe the intrinsic active material exciton diffusion length.

SELECTION OF CITATIONS
SEARCH DETAIL
...