Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Mol Biol ; 305(1): 137-49, 2001 Jan 05.
Article in English | MEDLINE | ID: mdl-11114253

ABSTRACT

Carditoxins (CTXs) from cobra snake venoms, the basic 60-62 residue all-beta sheet polypeptides, are known to bind to and impair the function of cell membranes. To assess the membrane induced conformation and orientation of CTXs, the interaction of the P-type cardiotoxin II from Naja oxiana snake venom (CTII) with perdeuterated dodecylphosphocholine (DPC) was studied using ( 1 )H-NMR spectroscopy and diffusion measurements. Under conditions where the toxin formed a well-defined complex with DPC, the spatial structure of CTII with respect to the presence of tightly bound water molecules in loop II, was calculated using the torsion angle dynamics program DYANA. The structure was found to be similar, except for subtle changes in the tips of all three loops, to the previously described "major" form of CTII in aqueous solution illustrated by the "trans" configuration of the Val7-Pro8 peptide bond. No "minor" form with the "cis" configuration of the above bond was found in the micelle-bound state. The broadening of the CTII backbone proton signals by 5, 16-doxylstearate relaxation probes, together with modeling based on the spatial structure of CTII, indicated a periphery mode of binding of the toxin molecule to the micelle and revealed its micelle interacting domain. The latter includes a hydrophobic region of CTII within the extremities of loops I and III (residues 5-11, 46-50), the basement of loop II (residues 24-29,31-37) and the belt of polar residues encircling these loops (lysines 4,5,12,23,50, serines 11,46, histidine 31, arginine 36). It is suggested that this structural motif and the mode of binding can be realized during interaction of CTXs with lipid and biological membranes.


Subject(s)
Cell Membrane/metabolism , Cobra Cardiotoxin Proteins/chemistry , Cobra Cardiotoxin Proteins/metabolism , Phosphorylcholine/analogs & derivatives , Phosphorylcholine/metabolism , Amino Acid Motifs , Amino Acid Sequence , Animals , Binding Sites , Cell Membrane/chemistry , Cobra Cardiotoxin Proteins/classification , Cyclic N-Oxides/metabolism , Diffusion , Histidine/metabolism , Micelles , Models, Molecular , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Conformation , Protons , Solutions
2.
Eur J Biochem ; 263(1): 152-62, 1999 Jul.
Article in English | MEDLINE | ID: mdl-10429199

ABSTRACT

1H-NMR spectroscopy data, such as NOE intraprotein and (bound water)/protein contacts, 3J coupling constants and deuterium exchange rates were used to determine the in-solution spatial structure of cytotoxin II from Naja naja oxiana snake venom (CTII). Exploiting information from two 1H-NMR spectral components, shown to be due to cis/trans isomerization of the Val7-Pro8 peptide bond, spatial structures of CTII minor and major forms (1 : 6) were calculated using the torsion angle dynamics algorithm of the DYANA program and then energy refined using the FANTOM program. Each form, major and minor, is represented by 20 resulting conformers, demonstrating mean backbone rmsd values of 0.51 and 0.71 A, respectively. Two forms of CTII preserve the structural skeleton as three large loops, including two beta-sheets with bend regions, and demonstrate structural differences at loop I, where cis/trans isomerization occurs. The CTII side-chain distribution constitutes hydrophilic and hydrophobic belts around the protein, alternating in the trend of the three main loops. Because of the Omega-shaped backbone, formed in participation with two bound water molecules, the tip of loop II bridges the tips of loops I and III. This ensures the continuity of the largest hydrophobic belt, formed with the residues of these tips. Comparison revealed pronounced differences in the spatial organization of the tips of the three main loops between CTII and previous structures of homologous cytotoxins (cardiotoxins) in solution.


Subject(s)
Cobra Cardiotoxin Proteins/chemistry , Cytotoxins/chemistry , Elapid Venoms/chemistry , Animals , Magnetic Resonance Spectroscopy , Models, Molecular , Protein Conformation , Solutions , Stereoisomerism , Thermodynamics , Water
SELECTION OF CITATIONS
SEARCH DETAIL