Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
mBio ; 5(5): e01978-14, 2014 Oct 21.
Article in English | MEDLINE | ID: mdl-25336459

ABSTRACT

The cytokine gamma interferon (IFN-γ), with antimicrobial and immunoregulatory functions, can be produced by T cells following stimulation through their T cell receptors (TCRs) for antigen. The innate cytokines type 1 IFNs and interleukin-12 (IL-12) can also stimulate IFN-γ production by natural killer (NK) but not naive T cells. High basal expression of signal transducer and activator of transcription 4 (STAT4), used by type 1 IFN and IL-12 to induce IFN-γ as well as CD25, contributes to the NK cell responses. During acute viral infections, antigen-specific CD8 T cells are stimulated to express elevated STAT4 and respond to the innate factors with IFN-γ production. Little is known about the requirements for cytokine compared to TCR stimulation. Primary infections of mice with lymphocytic choriomeningitis virus (LCMV) demonstrated that although the elicited antigen-specific CD8 T cells acquired STAT4-dependent innate cytokine responsiveness for IFN-γ and CD25 induction ex vivo, TCR stimulation induced these through STAT4-independent pathways. During secondary infections, LCMV-immune CD8 T cells had STAT4-dependent IFN-γ expression at times of innate cytokine induction but subsequently expanded through STAT4-independent pathways. At times of innate cytokine responses during infection with the antigen-distinct murine cytomegalovirus virus (MCMV), NK and LCMV-immune CD8 T cells both had activation of pSTAT4 and IFN-γ. The T cell IFN-γ response was STAT4 and IL-12 dependent, but antigen-dependent expansion was absent. By dissecting requirements for STAT4 and antigen, this work provides novel insights into the endogenous regulation of cytokine and proliferative responses and demonstrates conditioning of innate immunity by experience. Importance: Understanding the regulation and function of adaptive immunity is key to the development of new and improved vaccines. Its CD8 T cells are activated through antigen-specific receptors to contribute to long-lasting immunity after natural infections or purposeful immunization. The antigen-receptor pathway of stimulation can lead to production of gamma interferon (IFN-γ), a cytokine having both direct antimicrobial and immunoregulatory functions. Natural killer cells can also produce IFN-γ in response to the innate cytokines type 1 IFNs and/or interleukin-12. This work demonstrates that CD8 T cells acquire parallel responsiveness to innate cytokine signaling for IFN-γ expression during their selection and development and maintain this capability to participate in innate immune responses as long-lived memory cells. Thus, CD8 T cells are conditioned to play a role in innate immunity, and their presence under immune conditions has the potential to regulate resistance to either secondary challenges or primary infections with unrelated agents.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunity, Innate , Interferon-gamma/metabolism , Interleukin-12/metabolism , Killer Cells, Natural/immunology , STAT4 Transcription Factor/metabolism , Animals , Arenaviridae Infections/immunology , Cytomegalovirus Infections/immunology , Lymphocytic choriomeningitis virus/immunology , Mice , Muromegalovirus/immunology
2.
mBio ; 2(4)2011.
Article in English | MEDLINE | ID: mdl-21828218

ABSTRACT

UNLABELLED: Natural killer (NK) cells are equipped to innately produce the cytokine gamma interferon (IFN-γ) in part because they basally express high levels of the signal transducer and activator of transcription 4 (STAT4). Type 1 interferons (IFNs) have the potential to activate STAT4 and promote IFN-γ expression, but concurrent induction of elevated STAT1 negatively regulates access to the pathway. As a consequence, it has been difficult to detect type 1 IFN stimulation of NK cell IFN-γ during viral infections in the presence of STAT1 and to understand the evolutionary advantage for maintaining the pathway. The studies reported here evaluated NK cell responses following infections with lymphocytic choriomeningitis virus (LCMV) in the compartment handling the earliest events after infection, the peritoneal cavity. The production of type 1 IFNs, both IFN-α and IFN-ß, was shown to be early and of short duration, peaking at 30 h after challenge. NK cell IFN-γ expression was detected with overlapping kinetics and required activating signals delivered through type 1 IFN receptors and STAT4. It took place under conditions of high STAT4 levels but preceded elevated STAT1 expression in NK cells. The IFN-γ response reduced viral burdens. Interestingly, increases in STAT1 were delayed in NK cells compared to other peritoneal exudate cell (PEC) populations. Taken together, the studies demonstrate a novel mechanism for stimulating IFN-γ production and elucidate a biological role for type 1 IFN access to STAT4 in NK cells. IMPORTANCE: Pathways regulating the complex and sometimes paradoxical effects of cytokines are poorly understood. Accumulating evidence indicates that the biological consequences of type 1 interferon (IFN) exposure are shaped by modifying the concentrations of particular STATs to change access to the different signaling molecules. The results of the experiments presented conclusively demonstrate that NK cell IFN-γ can be induced through type 1 IFN and STAT4 at the first site of infection during a period with high STAT4 but prior to induction of elevated STAT1 in the cells. The response mediates a role in viral defense. Thus, a very early pathway to and source of IFN-γ in evolving immune responses to infections are identified by this work. The information obtained helps resolve long-standing controversies and advances the understanding of mechanisms regulating key type 1 IFN functions, in different cells and compartments and at different times of infection, for accessing biologically important functions.


Subject(s)
Interferon Type I/immunology , Interferon-gamma/biosynthesis , Interferon-gamma/immunology , Killer Cells, Natural/immunology , Lymphocytic Choriomeningitis/immunology , Lymphocytic choriomeningitis virus/immunology , Animals , Humans , Interferon Type I/biosynthesis , Interleukin-18/immunology , Interleukin-18/metabolism , Lymphocytic Choriomeningitis/pathology , Lymphocytic Choriomeningitis/prevention & control , Mice , Mice, Inbred C57BL
3.
Exp Hematol ; 35(1): 96-107, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17198878

ABSTRACT

OBJECTIVE: The purpose of this study was to evaluate the technique of stem cell-directed differentiation in the context of cell-cycle position. The hypothesis was that stem cells would have different sensitivities to an identical inductive signal through cell-cycle transit and that this would affect the outcome of its progeny. MATERIALS AND METHODS: Differentiation of murine marrow lineage(negative)rhodamine-123(low-)Hoechst-33342(low) (LRH) stem cells was determined at different points in cell cycle under stimulation by thrombopoietin, flt3 ligand, and steel factor. LRH stem cells were subcultured in granulocyte macrophage colony-stimulating factor, granulocyte colony-stimulating factor, and steel factor at different points in cell cycle and differentiation determined 14 days later. RESULTS: There was a significant, reproducible, and pronounced reversible increase in differentiation to megakaryocytes in early S-phase and to nonproliferative granulocytes in mid S-phase. Megakaryocyte hotspots also were seen on a clonal basis. Elevations of the transcription factor FOG-1 were seen at the hotspot along with increases in Nfe2 and Fli1. CONCLUSIONS: We show that the potential of marrow stem cells to differentiate changes reversibly with cytokine-induced cell-cycle transit, suggesting that stem cell regulation is not based on the classic hierarchical model, but instead on a functional continuum. We propose that there is a tight linkage of commitment to a lineage and a particular phase of cell cycle. Thus, windows of vulnerability for commitment can open and close depending on the phase of cell cycle. These data indicate that stem cell differentiation occurs on a cell-cycle-related continuum with fluctuating windows of transcriptional opportunity.


Subject(s)
Cell Differentiation , Stem Cells/cytology , Animals , Bone Marrow Cells/cytology , Cell Culture Techniques , Cell Cycle , Cell Lineage , Intercellular Signaling Peptides and Proteins/pharmacology , Interphase , Male , Megakaryocytes/cytology , Mice , Mice, Inbred Strains , Pluripotent Stem Cells/cytology , S Phase , Transcription Factors
4.
Blood ; 106(4): 1488-94, 2005 Aug 15.
Article in English | MEDLINE | ID: mdl-15870176

ABSTRACT

We have studied conversion of marrow cells to skeletal muscle in cardiotoxin-injured anterior tibialis muscle in a green fluorescent protein (GFP) to C57BL/6 transplantation model and ascertained that total body irradiation (TBI) with establishment of chimerism is a critical factor. Local irradiation has little effect in lower doses and was detrimental at higher doses. Whole body (1000 cGy) with shielding of the leg or a combination of 500 cGy TBI and 500 cGy local radiations was found to give the best results. In non-obese diabetic-severe combined immunodeficient (NOD-SCID) recipients, we were able to show that conversion could occur without radiation, albeit at relatively lower levels. Within 3 days of cardiotoxin injury, GFP-positive mononuclear cells were seen in the muscle, and within 2 weeks GFP-positive muscle fibers were identified. Conversion rates were increased by increasing donor-cell dose. Timing of the cardiotoxin injury relative to the transplantation was critical. These studies show that variables in transplantation and injury are critical features of marrow-to-muscle conversions. Irradiation primarily effects conversion by promoting chimerism. These data may explain the differences in the literature for the frequency of marrow-to-skeletal muscle conversion and can set a platform for future models and perhaps clinical protocols.


Subject(s)
Bone Marrow Cells/physiology , Bone Marrow Transplantation , Muscle, Skeletal/physiology , Regeneration , Animals , Dose-Response Relationship, Radiation , Green Fluorescent Proteins , Mice , Mice, Inbred C57BL , Muscle Fibers, Skeletal/physiology , Muscle, Skeletal/cytology , Muscle, Skeletal/injuries , Time Factors , Transplantation Chimera , Whole-Body Irradiation
5.
Exp Hematol ; 32(5): 426-34, 2004 May.
Article in English | MEDLINE | ID: mdl-15145210

ABSTRACT

OBJECTIVE: Murine marrow cells are capable of repopulating skeletal muscle fibers. A point of concern has been the "robustness" of such conversions. We have investigated the impact of type of cell delivery, muscle injury, nature of delivered cell, and stem cell mobilizations on marrow-to-muscle conversion. METHODS: We transplanted green fluorescence protein (GFP)-transgenic marrow into irradiated C57BL/6 mice and then injured anterior tibialis muscle by cardiotoxin. One month after injury, sections were analyzed by standard and deconvolutional microscopy for expression of muscle and hematopoietic markers. RESULTS: Irradiation was essential to conversion, although whether by injury or induction of chimerism is not clear. Cardiotoxin- and, to a lesser extent, PBS-injected muscles showed significant number of GFP(+) muscle fibers, while uninjected muscles showed only rare GFP(+) cells. Marrow conversion to muscle was increased by two cycles of G-CSF mobilization and to a lesser extent by G-CSF and steel or GM-CSF. Transplantation of female GFP to male C57BL/6 and GFP to ROSA26 mice showed fusion of donor cells to recipient muscle. High numbers of donor-derived muscle colonies and up to 12% GFP(+) muscle cells were seen after mobilization or direct injection. These levels of donor muscle chimerism approach levels that could be clinically significant in developing strategies for the treatment of muscular dystrophies. CONCLUSION: In summary, the conversion of marrow to skeletal muscle cells is based on cell fusion and is critically dependent on injury. This conversion is also numerically significant and increases with mobilization.


Subject(s)
Bone Marrow Cells/cytology , Bone Marrow Transplantation , Muscle Cells/cytology , Muscle Fibers, Skeletal/cytology , Regeneration , Animals , Cell Fusion , Colony-Stimulating Factors/pharmacology , Female , Green Fluorescent Proteins , Hematopoietic Stem Cell Mobilization , Luminescent Proteins , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/injuries , Transplantation Chimera
SELECTION OF CITATIONS
SEARCH DETAIL
...