Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Vet Parasitol ; 276S: 100014, 2019.
Article in English | MEDLINE | ID: mdl-34311938

ABSTRACT

Cattle trypanosomosis caused by Trypanosoma vivax is a widely distributed disease in Africa and Latin America. It causes significant losses in the livestock industry and is characterized by fluctuating parasitemia, anemia, fever, lethargy, and weight loss. In this study we evaluated the virulence (capacity to multiply inside the host and to modulate the host response) and pathogenicity (ability to produce disease and/or mortality) patterns of two T. vivax strains (TvMT1 and TvLIEM176) in experimentally-infected sheep and determined the proteins differentially expressed in the proteomes of these two strains. Hematological and clinical parameters were monitored in experimentally-infected versus non-infected sheep for 60 days. All the infected animals developed discernable parasitemia at 3 days post-infection (dpi), and the first parasitemia peak was observed at 6 dpi. The maximum average value of parasitemia was 1.3×107 (95% CI, 7.9×105-2×108) parasites/ml in TvLIEM176-infected animals, and 2.5×106 (95% CI, 1.6×105-4×107) parasites/ml in TvMT1-infected ones. Anemia and clinical manifestations were more severe in the animals infected by TvMT1 strain than in those infected by TvLIEM176. In the proteomic analysis, a total of 29 proteins were identified, of which 14 exhibited significant differences in their expression levels between strains. Proteins with higher expression in TvLIEM176 were: alpha tubulin, beta tubulin, arginine kinase, glucose-regulated protein 78, paraflagellar protein 3, and T-complex protein 1 subunit theta. Proteins with higher expression in TvMT1 were: chaperonin HSP60, T-complex protein 1 subunit alpha, heat shock protein 70, pyruvate kinase, glycerol kinase, inosine-5'-monophosphate dehydrogenase, 73kDa paraflagellar rod protein, and vacuolar ATP synthase. There was a difference in the virulence and pathogenicity between the T. vivax strains: TvLIEM176 showed high virulence and moderate pathogenicity, whereas TvMT1 showed low virulence and high pathogenicity. The proteins identified in this study are discussed for their potential involvement in strains' virulence and pathogenicity, to be further defined as biomarkers of severity in T. vivax infections.

2.
Vet Parasitol X ; 2: 100014, 2019 Nov.
Article in English | MEDLINE | ID: mdl-32904712

ABSTRACT

Cattle trypanosomosis caused by Trypanosoma vivax is a widely distributed disease in Africa and Latin America. It causes significant losses in the livestock industry and is characterized by fluctuating parasitemia, anemia, fever, lethargy, and weight loss. In this study we evaluated the virulence (capacity to multiply inside the host and to modulate the host response) and pathogenicity (ability to produce disease and/or mortality) patterns of two T. vivax strains (TvMT1 and TvLIEM176) in experimentally-infected sheep and determined the proteins differentially expressed in the proteomes of these two strains. Hematological and clinical parameters were monitored in experimentally-infected versus non-infected sheep for 60 days. All the infected animals developed discernable parasitemia at 3 days post-infection (dpi), and the first parasitemia peak was observed at 6 dpi. The maximum average value of parasitemia was 1.3 × 107 (95% CI, 7.9 × 105-2 × 108) parasites/ml in TvLIEM176-infected animals, and 2.5 × 106 (95% CI, 1.6 × 105-4 × 107) parasites/ml in TvMT1-infected ones. Anemia and clinical manifestations were more severe in the animals infected by TvMT1 strain than in those infected by TvLIEM176. In the proteomic analysis, a total of 29 proteins were identified, of which 14 exhibited significant differences in their expression levels between strains. Proteins with higher expression in TvLIEM176 were: alpha tubulin, beta tubulin, arginine kinase, glucose-regulated protein 78, paraflagellar protein 3, and T-complex protein 1 subunit theta. Proteins with higher expression in TvMT1 were: chaperonin HSP60, T-complex protein 1 subunit alpha, heat shock protein 70, pyruvate kinase, glycerol kinase, inosine-5'-monophosphate dehydrogenase, 73 kDa paraflagellar rod protein, and vacuolar ATP synthase. There was a difference in the virulence and pathogenicity between the T. vivax strains: TvLIEM176 showed high virulence and moderate pathogenicity, whereas TvMT1 showed low virulence and high pathogenicity. The proteins identified in this study are discussed for their potential involvement in strains' virulence and pathogenicity, to be further defined as biomarkers of severity in T. vivax infections.

3.
Article in English | MEDLINE | ID: mdl-29354598

ABSTRACT

The tropical bont tick, Amblyomma variegatum, is a tick species of veterinary importance and is considered as one of major pest of ruminants in Africa and in the Caribbean. It causes direct skin lesions, transmits heartwater, and reactivates bovine dermatophilosis. Tick saliva is reported to affect overall host responses through immunomodulatory and anti-inflammatory molecules, among other bioactive molecules. The general objective of this study was to better understand the role of saliva in interaction between the Amblyomma tick and the host using cellular biology approaches and proteomics, and to discuss its impact on disease transmission and/or activation. We first focused on the immuno-modulating effects of semi-fed A. variegatum female saliva on bovine peripheral blood mononuclear cells (PBMC) and monocyte-derived macrophages in vitro. We analyzed its immuno-suppressive properties by measuring the effect of saliva on PBMC proliferation, and observed a significant decrease in ConA-stimulated PBMC lymphoproliferation. We then studied the effect of saliva on bovine macrophages using flow cytometry to analyze the expression of MHC-II and co-stimulation molecules (CD40, CD80, and CD86) and by measuring the production of nitric oxide (NO) and pro- or anti-inflammatory cytokines. We observed a significant decrease in the expression of MHC-II, CD40, and CD80 molecules, associated with decreased levels of IL-12-p40 and TNF-α and increased level of IL-10, which could explain the saliva-induced modulation of NO. To elucidate these immunomodulatory effects, crude saliva proteins were analyzed using proteomics with an Orbitrap Elite mass spectrometer. Among the 336 proteins identified in A. variegatum saliva, we evidenced bioactive molecules exhibiting anti-inflammatory, immuno-modulatory, and anti-oxidant properties (e.g., serpins, phospholipases A2, heme lipoprotein). We also characterized an intriguing ubiquitination complex that could be involved in saliva-induced immune modulation of the host. We propose a model for the interaction between A. variegatum saliva and host immune cells that could have an effect during tick feeding by favoring pathogen dissemination or activation by reducing the efficiency of host immune response to the corresponding tick-borne diseases.


Subject(s)
Immunologic Factors/metabolism , Ixodidae , Leukocytes, Mononuclear/drug effects , Macrophages/drug effects , Saliva/metabolism , Salivary Proteins and Peptides/metabolism , Animals , Antigens, CD/analysis , Cattle , Cell Proliferation/drug effects , Cells, Cultured , Cytokines/analysis , Histocompatibility Antigens Class II/analysis , Leukocytes, Mononuclear/immunology , Macrophages/immunology , Nitric Oxide/analysis
4.
Parasit Vectors ; 9: 149, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26979518

ABSTRACT

BACKGROUND: The saliva of tsetse flies contains a cocktail of bioactive molecules inducing specific antibody responses in hosts exposed to bites. We have previously shown that an indirect-ELISA test using whole salivary extracts from Glossina morsitans submorsitans was able to discriminate between (i) cattle from tsetse infested and tsetse free areas and (ii) animals experimentally exposed to low or high numbers of tsetse flies. In the present study, our aim was to identify specific salivary synthetic peptides that could be used to develop simple immunoassays to measure cattle exposure to tsetse flies. METHODS: In a first step, 2D-electrophoresis immunoblotting, using sera from animals exposed to a variety of bloodsucking arthropods, was performed to identify specific salivary proteins recognised in cattle exposed to tsetse bites. Linear epitope prediction software and Blast analysis were then used to design synthetic peptides within the identified salivary proteins. Finally, candidate peptides were tested by indirect-ELISA on serum samples from tsetse infested and tsetse free areas, and from exposure experiments. RESULTS: The combined immunoblotting and bioinformatics analyses led to the identification of five peptides carrying putative linear epitopes within two salivary proteins: the tsetse salivary gland protein 1 (Tsal1) and the Salivary Secreted Adenosine (SSA). Of these, two were synthesised and tested further based on the absence of sequence homology with other arthropods or pathogen species. IgG responses to the Tsal152-75 synthetic peptide were shown to be specific of tsetse exposure in both naturally and experimentally exposed hosts. Nevertheless, anti-Tsal152-75 IgG responses were absent in animals exposed to high tsetse biting rates. CONCLUSIONS: These results suggest that Tsal152-75 specific antibodies represent a biomarker of low cattle exposure to tsetse fly. These results are discussed in the light of the other available tsetse saliva based-immunoassays and in the perspective of developing a simple serological tool for tsetse eradication campaigns to assess the tsetse free status or to detect tsetse reemergence in previously cleared areas.


Subject(s)
Cattle Diseases/epidemiology , Cattle Diseases/parasitology , Ectoparasitic Infestations/veterinary , Epitopes/immunology , Immunoglobulin G/blood , Salivary Proteins and Peptides/immunology , Tsetse Flies/immunology , Animals , Cattle , Ectoparasitic Infestations/epidemiology , Ectoparasitic Infestations/parasitology , Enzyme-Linked Immunosorbent Assay/methods , Epitopes/genetics , Immunoblotting , Salivary Proteins and Peptides/genetics
5.
Sci Adv ; 1(10): e1501150, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26702449

ABSTRACT

Relics of ancient infections are abundant in eukaryote genomes, but little is known about how they evolve when they confer a functional benefit on their host. We show here, for the first time, that the virus-like particles shown to protect Venturia canescens eggs against host immunity are derived from a nudivirus genome incorporated by the parasitic wasp into its own genetic material. Nudivirus hijacking was also at the origin of protective particles from braconid wasps. However, we show here that the viral genes produce "liposomes" that wrap and deliver V. canescens virulence proteins, whereas the particles are used as gene transfer agents in braconid wasps. Our findings indicate that virus domestication has occurred repeatedly during parasitic wasp evolution but with different evolutionary trajectories after endogenization, resulting in different virulence molecule delivery strategies.

6.
Infect Genet Evol ; 33: 84-94, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25913042

ABSTRACT

A cross-talk in host-parasite associations begins when a host encounters a parasite. For many host-parasite relationships, this cross-talk has been taking place for hundreds of millions of years. The co-evolution of hosts and parasites, the familiar 'arms race' results in fascinating adaptations. Over the years, host-parasite interactions have been studied extensively from both the host and parasitic point of view. Proteomics studies have led to new insights into host-parasite cross-talk and suggest that the molecular strategies used by parasites attacking animals and plants share many similarities. Likewise, animals and plants use several common molecular tactics to counter parasite attacks. Based on proteomics surveys undertaken since the post-genomic era, a synthesis is presented on the molecular strategies used by intra- and extracellular parasites to invade and create the needed habitat for growth inside the host, as well as strategies used by hosts to counter these parasite attacks. Pitfalls in deciphering host-parasite cross-talk are also discussed. To conclude, helpful advice is given with regard to new directions that are needed to discover the generic and specific molecular strategies used by the host against parasite invasion as well as by the parasite to invade, survive, and grow inside their hosts, and to finally discover parasitic molecular signatures associated with their development.


Subject(s)
Host-Parasite Interactions , Parasites/physiology , Proteomics , Animals , Humans , Proteomics/methods
7.
Parasit Vectors ; 7: 599, 2014 Dec 20.
Article in English | MEDLINE | ID: mdl-25526764

ABSTRACT

BACKGROUND: Malaria is the major parasitic disease worldwide caused by Plasmodium infection. The objective of integrated malaria control programs is to decrease malaria transmission, which needs specific tools to be accurately assessed. In areas where the transmission is low or has been substantially reduced, new complementary tools have to be developed to improve surveillance. A recent approach, based on the human antibody response to Anopheles salivary proteins, has been shown to be efficient in evaluating human exposure to Anopheles bites. The aim of the present study was to identify new An. gambiae salivary proteins as potential candidate biomarkers of human exposure to P. falciparum-infective bites. METHODS: Experimental infections of An. gambiae by wild P. falciparum were carried out in semi-field conditions. Then a proteomic approach, combining 2D-DIGE and mass spectrometry, was used to identify the overexpressed salivary proteins in infected salivary glands compared to uninfected An. gambiae controls. Subsequently, a peptide design of each potential candidate was performed in silico and their antigenicity was tested by an epitope-mapping technique using blood from individuals exposed to Anopheles bites. RESULTS: Five salivary proteins (gSG6, gSG1b, TRIO, SG5 and long form D7) were overexpressed in the infected salivary glands. Eighteen peptides were designed from these proteins and were found antigenic in children exposed to the Anopheles bites. Moreover, the results showed that the presence of wild P. falciparum in salivary glands modulates the expression of several salivary proteins and also appeared to induce post-translational modifications. CONCLUSIONS: This study is, to our knowledge, the first that compares the sialome of An. gambiae both infected and not infected by wild P. falciparum, making it possible to mimic the natural conditions of infection. This is a first step toward a better understanding of the close interactions between the parasite and the salivary gland of mosquitoes. In addition, these results open the way to define biomarkers of infective bites of Anopheles, which could, in the future, improve the estimation of malaria transmission and the evaluation of malaria vector control tools.


Subject(s)
Anopheles/parasitology , Insect Bites and Stings/immunology , Insect Proteins/immunology , Malaria, Falciparum/transmission , Plasmodium falciparum/physiology , Salivary Proteins and Peptides/immunology , Animals , Anopheles/physiology , Biomarkers/analysis , Female , Humans , Malaria, Falciparum/parasitology , Male , Salivary Glands/immunology
8.
PLoS One ; 9(8): e103816, 2014.
Article in English | MEDLINE | ID: mdl-25102176

ABSTRACT

Insensitive acetylcholinesterase resistance due to a mutation in the acetylcholinesterase (ace) encoding ace-1 gene confers cross-resistance to organophosphate and carbamate insecticides in Anopheles gambiae populations from Central and West Africa. This mutation is associated with a strong genetic cost revealed through alterations of some life history traits but little is known about the physiological and behavioural changes in insects bearing the ace-1(R) allele. Comparative analysis of the salivary gland contents between An. gambiae susceptible and ace-1(R) resistant strains was carried out to charaterize factors that could be involved in modifications of blood meal process, trophic behaviour or pathogen interaction in the insecticide-resistant mosquitoes. Differential analysis of the salivary gland protein profiles revealed differences in abundance for several proteins, two of them showing major differences between the two strains. These two proteins identified as saglin and TRIO are salivary gland-1 related proteins, a family unique to anopheline mosquitoes, one of them playing a crucial role in salivary gland invasion by Plasmodium falciparum sporozoites. Differential expression of two other proteins previously identified in the Anopheles sialome was also observed. The differentially regulated proteins are involved in pathogen invasion, blood feeding process, and protection against oxidation, relevant steps in the outcome of malaria infection. Further functional studies and insect behaviour experiments would confirm the impact of the modification of the sialome composition on blood feeding and pathogen transmission abilities of the resistant mosquitoes. The data supports the hypothesis of alterations linked to insecticide resistance in the biology of the primary vector of human malaria in Africa.


Subject(s)
Acetylcholinesterase/genetics , Anopheles/metabolism , Insecticide Resistance/genetics , Proteome , Animals , Anopheles/genetics , Anopheles/parasitology , Host-Parasite Interactions , Insect Proteins/chemistry , Insect Proteins/isolation & purification , Plasmodium falciparum/physiology , Principal Component Analysis , Salivary Glands/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
9.
PLoS One ; 9(6): e100791, 2014.
Article in English | MEDLINE | ID: mdl-24967735

ABSTRACT

Intracellular pathogens including bacteria, viruses and protozoa hijack host cell functions to access nutrients and to bypass cellular defenses and immune responses. These strategies have been acquired through selective pressure and allowed pathogens to reach an appropriate cellular niche for their survival and growth. To get new insights on how parasites hijack host cellular functions, we developed a SILAC (Stable Isotope Labeling by Amino Acids in Cell culture) quantitative proteomics workflow. Our study focused on deciphering the cross-talk in a host-parasite association, involving human foreskin fibroblasts (HFF) and the microsporidia Anncaliia algerae, a fungus related parasite with an obligate intracellular lifestyle and a strong host dependency. The host-parasite cross-talk was analyzed at five post-infection times 1, 6, 12 and 24 hours post-infection (hpi) and 8 days post-infection (dpi). A significant up-regulation of four interferon-induced proteins with tetratricopeptide repeats IFIT1, IFIT2, IFIT3 and MX1 was observed at 8 dpi suggesting a type 1 interferon (IFN) host response. Quantitative alteration of host proteins involved in biological functions such as signaling (STAT1, Ras) and reduction of the translation activity (EIF3) confirmed a host type 1 IFN response. Interestingly, the SILAC approach also allowed the detection of 148 A. algerae proteins during the kinetics of infection. Among these proteins many are involved in parasite proliferation, and an over-representation of putative secreted effectors proteins was observed. Finally our survey also suggests that A. algerae could use a transposable element as a lure strategy to escape the host innate immune system.


Subject(s)
Host-Parasite Interactions , Intracellular Space/parasitology , Microsporidia/physiology , DNA Transposable Elements/genetics , Fibroblasts/cytology , Fibroblasts/parasitology , Fungal Proteins/metabolism , Humans , Intracellular Space/metabolism , Microsporidia/genetics , Microsporidia/metabolism , Proteome
10.
PLoS One ; 9(4): e95442, 2014.
Article in English | MEDLINE | ID: mdl-24748035

ABSTRACT

We have analyzed the comportment in in vitro culture of 2 different genotypes of Trypanosoma cruzi, the agent of Chagas disease, pertaining to 2 major genetic subdivisions (near-clades) of this parasite. One of the stocks was a fast-growing one, highly virulent in mice, while the other one was slow-growing, mildly virulent in mice. The working hypothesis was that mixtures of genotypes interact, a pattern that has been observed by us in empirical experimental studies. Genotype mixtures were followed every 7 days and characterized by the DIGE technology of proteomic analysis. Proteic spots of interest were characterized by the SAMESPOT software. Patterns were compared to those of pure genotypes that were also evaluated every 7 days. One hundred and three spots exhibited changes in time by comparison with T = 0. The major part of these spots (58%) exhibited an under-expression pattern by comparison with the pure genotypes. 32% of the spots were over-expressed; 10% of spots were not different from those of pure genotypes. Interestingly, interaction started a few minutes after the mixtures were performed. We have retained 43 different proteins that clearly exhibited either under- or over-expression. Proteins showing interaction were characterized by mass spectrometry (MALDI-TOF). Close to 50% of them were either tubulins or heat shock proteins. This study confirms that mixed genotypes of T. cruzi interact at the molecular level. This is of great interest because mixtures of genotypes are very frequent in Chagas natural cycles, both in insect vectors and in mammalian hosts, and may play an important role in the transmission and severity of Chagas disease. The methodology proposed here is potentially applicable to any micropathogen, including fungi, bacteria and viruses. It should be of great interest in the case of bacteria, for which the epidemiological and clinical consequences of mixed infections could be underestimated.


Subject(s)
Genotype , Proteomics , Transcriptome , Trypanosoma cruzi/genetics , Trypanosoma cruzi/metabolism , Proteome , Proteomics/methods
11.
Microbes Infect ; 15(5): 416-27, 2013 May.
Article in English | MEDLINE | ID: mdl-23500186

ABSTRACT

The saliva of blood sucking arthropods contains a number of pharmacologically active compounds that induce an antibody response in exposed human individuals. The objectives of the present study were (i) to assess the human IgG response directed against salivary antigens of Glossina palpalis gambiensis, the main vector of Trypanosoma brucei gambiense in West Africa, as a biomarker of human-tsetse contacts; and (ii) to identify specific salivary antigens. Immune reactivity of human plasma collected within active human African trypanosomiasis (HAT) foci (coastal Guinea), historical foci where tsetse flies are still present (South-West Burkina Faso) and a tsetse free area (Bobo-Dioulasso, Burkina Faso), was measured by ELISA against whole saliva extracts. In the active HAT foci and areas where tsetse flies were present in high densities, specific IgG responses were significantly higher (p < 0.0001) to those in Bobo-Dioulasso or in Loropeni, where tsetse flies were either absent or only present at low densities. Furthermore, 2D-electrophoresis combined with mass spectrometry enabled to reveal that several antigens were specifically recognized by plasma from exposed individuals. Among them, four salivary proteins were successfully identified (Ada, 5'Nuc, Ag5 and Tsgf1). These results represent a first attempt to identify Glossina salivary proteins or synthetic peptides to develop a standardized and specific biomarker of tsetse exposure in West Africa.


Subject(s)
Antibodies/blood , Biomarkers/blood , Insect Bites and Stings/diagnosis , Insect Proteins/immunology , Insect Proteins/isolation & purification , Tsetse Flies/pathogenicity , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Burkina Faso , Child , Child, Preschool , Disease Vectors , Electrophoresis, Gel, Two-Dimensional , Enzyme-Linked Immunosorbent Assay , Female , Guinea , Humans , Immunoglobulin G/blood , Male , Mass Spectrometry , Middle Aged , Salivary Glands/chemistry , Salivary Proteins and Peptides/immunology , Salivary Proteins and Peptides/isolation & purification , Tsetse Flies/chemistry , Young Adult
12.
Insect Biochem Mol Biol ; 43(3): 292-307, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23298679

ABSTRACT

The venom gland is a conserved organ in Hymenoptera that shows adaptations associated with life-style diversification. Few studies have investigated venom components and function in the highly diverse parasitic wasps and all suggest that the venom regulates host physiology. We explored the venom of the endoparasitoid Hyposoter didymator (Campopleginae), a species with an associated polydnavirus produced in the ovarian tissue. We investigated the effects of the H. didymator venom on two physiological traits of the host Spodoptera frugiperda (Noctuidae): encapsulation response and growth rate. We found that H. didymator venom had no significant effect on host cellular immunity or development, suggesting that it does not contribute to parasitism success. The host physiology seemed to be modified essentially by the ovarian fluid containing the symbiotic polydnaviruses. Proteomic analyses indicated that the H. didymator venom gland produces a large variety of proteins, consistent with the classical hymenopteran venom protein signature, including: reprolysin-like, dipeptidyl peptidase IV, hyaluronidase, arginine kinase or allergen proteins. The venom extracts also contained novel proteins, encoded by venom genes conserved in Campopleginae ichneumonids, and proteins with similarities to active molecules identified in other parasitoid species, such as calreticulin, reprolysin, superoxide dismutase and serpin. However, some of these proteins appear to be produced only in small amounts or to not be secreted. Possibly, in Campopleginae carrying polydnaviruses, the host-modifying activities of venom became redundant following the acquisition of polydnaviruses by the lineage.


Subject(s)
Host-Parasite Interactions , Spodoptera/drug effects , Wasp Venoms/pharmacology , Wasps/virology , Amino Acid Sequence , Animals , Exocrine Glands/ultrastructure , Female , Gene Expression Profiling , Hydrolases/metabolism , Immunity, Cellular , Insect Proteins/metabolism , Larva/drug effects , Larva/growth & development , Larva/immunology , Larva/parasitology , Male , Molecular Sequence Data , Proteome , Sequence Analysis, DNA , Serine Proteinase Inhibitors/isolation & purification , Spodoptera/growth & development , Spodoptera/immunology , Spodoptera/parasitology , Wasp Venoms/chemistry , Wasp Venoms/metabolism , Wasps/metabolism , Wasps/ultrastructure
13.
Ecol Evol ; 2(4): 681-94, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22837817

ABSTRACT

Hosts are frequently infected with more than one parasite or pathogen at any one time, but little is known as to how they respond to multiple immune challenges compared to those involving single infections. We investigated the proteome of Aedes aegypti larvae following infection with either Edhazardia aedis or Vavraia culicis, and coinfections involving both. They are both obligate intracellular parasites belonging to the phylum microsporidia and infect natural populations of Ae. aegypti. The results found some proteins only showing modified abundance in response to infections involving E. aedis, while others were only differentially abundant when infections involved V. culicis. Some proteins only responded with modified abundance to the coinfection condition, while others were differentially abundant in response to all three types of infection. As time since infection increased, the response to each of the single parasite infections diverged, while the response to the E. aedis and coinfection treatments converged. Some of the proteins differentially abundant in response to infection were identified. They included two vacuolar ATPases, proteins known to have a role in determining the infection success of intracellular parasites. This result suggests microsporidia could influence the infection success of other intracellular pathogens infecting vector species of mosquito, including viruses, Plasmodium and Wolbachia.

14.
PLoS One ; 6(3): e17496, 2011 Mar 23.
Article in English | MEDLINE | ID: mdl-21448269

ABSTRACT

BACKGROUND: The Culex quinquefasciatus mosquito, a major pest and vector of filariasis and arboviruses in the tropics, has developed multiple resistance mechanisms to the main insecticide classes currently available in public health. Among them, the insensitive acetylcholinesterase (ace-1(R) allele) is widespread worldwide and confers cross-resistance to organophosphates and carbamates. Fortunately, in an insecticide-free environment, this mutation is associated with a severe genetic cost that can affect various life history traits. Salivary proteins are directly involved in human-vector contact during biting and therefore play a key role in pathogen transmission. METHODS AND RESULTS: An original proteomic approach combining 2D-electrophoresis and mass spectrometry was adopted to compare the salivary expression profiles of two strains of C. quinquefasciatus with the same genetic background but carrying either the ace-1(R) resistance allele or not (wild type). Four salivary proteins were differentially expressed (>2 fold, P<0.05) in susceptible (SLAB) and resistant (SR) mosquito strains. Protein identification indicated that the D7 long form, a major salivary protein involved in blood feeding success, presented lower expression in the resistant strain than the susceptible strain. In contrast, three other proteins, including metabolic enzymes (endoplasmin, triosephosphate isomerase) were significantly over-expressed in the salivary gland of ace-1(R) resistant mosquitoes. A catalogue of 67 salivary proteins of C. quinquefasciatus sialotranscriptome was also identified and described. CONCLUSION: The "resistance"-dependent expression of salivary proteins in mosquitoes may have considerable impact on biting behaviour and hence on the capacity to transmit parasites/viruses to humans. The behaviour of susceptible and insecticide-resistant mosquitoes in the presence of vertebrate hosts and its impact on pathogen transmission urgently requires further investigation. DATA DEPOSITION: All proteomic data will be deposited at PRIDE (http://www.ebi.ac.uk/pride/).


Subject(s)
Culex/metabolism , Insecticide Resistance , Proteomics , Salivary Proteins and Peptides/metabolism , Animals , Electrophoresis, Gel, Two-Dimensional , Mass Spectrometry , Salivary Proteins and Peptides/chemistry
15.
Proc Natl Acad Sci U S A ; 107(47): 20411-6, 2010 Nov 23.
Article in English | MEDLINE | ID: mdl-21059959

ABSTRACT

We performed a phylogenetic character mapping on 26 stocks of Trypanosoma cruzi, the parasite responsible for Chagas disease, and 2 stocks of the sister taxon T. cruzi marinkellei to test for possible associations between T. cruzi-subspecific phylogenetic diversity and levels of protein expression, as examined by proteomic analysis and mass spectrometry. We observed a high level of correlation (P < 10(-4)) between genetic distance, as established by multilocus enzyme electrophoresis, and proteomic dissimilarities estimated by proteomic Euclidian distances. Several proteins were found to be specifically associated to T. cruzi phylogenetic subdivisions (discrete typing units). This study explores the previously uncharacterized links between infraspecific phylogenetic diversity and gene expression in a human pathogen. It opens the way to searching for new vaccine and drug targets and for identification of specific biomarkers at the subspecific level of pathogens.


Subject(s)
Biodiversity , Gene Expression , Phylogeny , Protozoan Proteins/metabolism , Trypanosoma cruzi/genetics , Cluster Analysis , Electrophoresis, Gel, Two-Dimensional , Mass Spectrometry , Proteomics/methods , Protozoan Proteins/genetics , Species Specificity
16.
PLoS Pathog ; 6(5): e1000923, 2010 May 27.
Article in English | MEDLINE | ID: mdl-20523890

ABSTRACT

Many thousands of endoparasitic wasp species are known to inject polydnavirus (PDV) particles into their caterpillar host during oviposition, causing immune and developmental dysfunctions that benefit the wasp larva. PDVs associated with braconid and ichneumonid wasps, bracoviruses and ichnoviruses respectively, both deliver multiple circular dsDNA molecules to the caterpillar. These molecules contain virulence genes but lack core genes typically involved in particle production. This is not completely unexpected given that no PDV replication takes place in the caterpillar. Particle production is confined to the wasp ovary where viral DNAs are generated from proviral copies maintained within the wasp genome. We recently showed that the genes involved in bracovirus particle production reside within the wasp genome and are related to nudiviruses. In the present work we characterized genes involved in ichnovirus particle production by analyzing the components of purified Hyposoter didymator Ichnovirus particles by LC-MS/MS and studying their organization in the wasp genome. Their products are conserved among ichnovirus-associated wasps and constitute a specific set of proteins in the virosphere. Strikingly, these genes are clustered in specialized regions of the wasp genome which are amplified along with proviral DNA during virus particle replication, but are not packaged in the particles. Clearly our results show that ichnoviruses and bracoviruses particles originated from different viral entities, thus providing an example of convergent evolution where two groups of wasps have independently domesticated viruses to deliver genes into their hosts.


Subject(s)
Genome, Insect/genetics , Genome, Viral/genetics , Polydnaviridae/genetics , Wasps/genetics , Wasps/virology , Animals , Evolution, Molecular , Female , Multigene Family/genetics , Ovary/physiology , Polydnaviridae/pathogenicity , Proviruses/genetics , Viral Proteins/genetics , Virion/genetics , Virulence
17.
Proteomics ; 10(10): 1906-16, 2010 May.
Article in English | MEDLINE | ID: mdl-19882664

ABSTRACT

Mosquito-transmitted pathogens pass through the insect's midgut (MG) and salivary gland (SG). What occurs in these organs in response to a blood meal is poorly understood, but identifying the physiological differences between sugar-fed and blood-fed (BF) mosquitoes could shed light on factors important in pathogens transmission. We compared differential protein expression in the MGs and SGs of female Aedes aegypti mosquitoes after a sugar- or blood-based diet. No difference was observed in the MG protein expression levels but certain SG proteins were highly expressed only in BF mosquitoes. In sugar-fed mosquitoes, housekeeping proteins were highly expressed (especially those related to energy metabolism) and actin was up-regulated. The immunofluorescence assay shows that there is no disruption of the SG cytoskeletal after the blood meal. We have generated for the first time the 2-DE profiles of immunogenic Ae. aegypti SG BF-related proteins. These new data could contribute to the understanding of the physiological processes that appear during the blood meal.


Subject(s)
Aedes/chemistry , Insect Proteins/analysis , Salivary Proteins and Peptides/analysis , Aedes/immunology , Animal Feed , Animals , Blood , Electrophoresis, Gel, Two-Dimensional , Female , Insect Proteins/immunology , Salivary Glands/chemistry , Salivary Glands/immunology , Salivary Proteins and Peptides/immunology
18.
Int J Parasitol ; 39(10): 1137-50, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19285981

ABSTRACT

Animal trypanosomosis is a major constraint to livestock productivity in the tropics and has a significant impact on the life of millions of people globally (mainly in Africa, South America and south-east Asia). In Africa, the disease in livestock is caused mainly by Trypanosoma congolense, Trypanosoma vivax, Trypanosoma evansi and Trypanosoma brucei brucei. The extracellular position of trypanosomes in the bloodstream of their host requires consideration of both the parasite and its naturally excreted-secreted factors (secretome) in the course of pathophysiological processes. We therefore developed and standardised a method to produce purified proteomes and secretomes of African trypanosomes. In this study, two strains of T. congolense exhibiting opposite properties of both virulence and pathogenicity were further investigated through their secretome expression and its involvement in host-parasite interactions. We used a combined proteomic approach (one-dimensional SDS-PAGE and two-dimensional differential in-gel electrophoresis coupled to mass spectrometry) to characterise the whole and differentially expressed protein contents of secretomes. The molecular identification of differentially expressed trypanosome molecules and their correlation with either the virulence process or pathogenicity are discussed with regard to their potential as new diagnostic or therapeutic tools against animal trypanosomosis.


Subject(s)
Protozoan Proteins/metabolism , Trypanosoma congolense/metabolism , Trypanosomiasis, African/metabolism , Animals , Electrophoresis, Gel, Two-Dimensional , Proteomics , Protozoan Proteins/classification , Species Specificity , Trypanosoma congolense/pathogenicity , Trypanosomiasis, African/parasitology , Virulence
19.
J Proteome Res ; 7(10): 4409-21, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18774838

ABSTRACT

Human cerebrospinal fluid (CSF) proteome is actively investigated to identify relevant biomarkers and therapeutic targets for neurological disorders. Approximately 80% of CSF proteome originate from plasma, yielding a high dynamic range in CSF protein concentration and precluding identification of potential biomarkers originating from CNS cells. Here, we have adapted the most complete multiaffinity depletion method available to remove 20 abundant plasma proteins from a CSF pool originating from patients with various cognitive disorders. We identified 622 unique CSF proteins in immunodepleted plus retained fractions versus 299 in native CSF, including 22 proteins hitherto not identified in CSF. Parallel analysis of neuronal secretome identified 34 major proteins secreted by cultured cortical neurons (cell adhesion molecules, proteins involved in neurite outgrowth and axonal guidance, modulators of synaptic transmission, proteases and protease inhibitors) of which 76% were detected with a high confidence in immunodepleted CSF versus 50% in native CSF. Moreover, a majority of proteins previously identified as secretory products of choroid plexus cells or astrocytes were detected in immunodepleted CSF. Hence, removal of 20 major plasma proteins from CSF improves detection of brain cell-derived proteins in CSF and should facilitate identification of relevant biomarkers in CSF proteome profiling analyses.


Subject(s)
Biomarkers , Blood Proteins , Central Nervous System/chemistry , Cerebrospinal Fluid/chemistry , Biomarkers/chemistry , Biomarkers/metabolism , Blood Proteins/cerebrospinal fluid , Blood Proteins/chemistry , Blood Proteins/metabolism , Cells, Cultured , Cerebral Cortex/cytology , Humans , Molecular Sequence Data , Neurons/chemistry , Neurons/cytology , Neurons/metabolism , Proteome/analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
20.
Microb Pathog ; 45(3): 236-40, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18620040

ABSTRACT

In Salmonella enterica serovar Typhimurium, MgtC and PagC are positively regulated by the PhoP-PhoQ two-component system, which is activated under magnesium deprivation. Both MgtC and PagC are of unknown function but have been involved in intramacrophage survival. We have found that the amount of PagC is lowered in a DeltamgtC mutant strain grown in magnesium depleted medium. However, the effect of MgtC on PagC does not account for the growth defect of a DeltamgtC mutant in macrophages since, in contrast to previous reports, our results indicate that PagC does not contribute to intramacrophage survival. In addition, a pagC null mutant is only poorly attenuated in Nramp1-negative or Nramp1-positive mice. On the other hand, a mgtC null mutant is significantly more attenuated with Nramp1-positive than Nramp1-negative mice, suggesting that a functional Nramp1 (Slc11a1) further limits the multiplication of this mutant within the host.


Subject(s)
Bacterial Proteins/metabolism , Cation Transport Proteins/metabolism , Gene Expression Regulation, Bacterial , Membrane Proteins/metabolism , Salmonella Infections/microbiology , Salmonella typhimurium/metabolism , Animals , Bacterial Proteins/genetics , Cation Transport Proteins/genetics , Female , Macrophages/microbiology , Membrane Proteins/genetics , Mice , Mice, Inbred BALB C , Mice, Inbred C3H , Mutation , Salmonella typhimurium/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...