Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Semin Cancer Biol ; 81: 96-105, 2022 06.
Article in English | MEDLINE | ID: mdl-33713795

ABSTRACT

Herein we analyze two special routes of the multinucleated cells' formation - the fusion of mononuclear cells and the formation of cell-in-cell structures - in the healthy tissues and in tumorigenesis. There are many theories of tumorigenesis based on the phenomenon of emergence of the hybrid cancer cells. We consider the phenomena, which are rarely mentioned in those theories: namely, cellularization of syncytium or coenocytes, and the reversible or irreversible somatogamy. The latter includes the short-term and the long-term vegetative (somatic) cells' fusions in the life cycles of unicellular organisms. The somatogamy and multinuclearity have repeatedly and independently emerged in various groups of unicellular eukaryotes. These phenomena are among dominant survival and biodiversity sustaining strategies in protists and we admit that they can likely play an analogous role in cancer cells.


Subject(s)
Eukaryota , Invertebrates , Animals , Carcinogenesis , Cell Communication , Cell Fusion , Humans
2.
Int J Mol Sci ; 21(11)2020 May 27.
Article in English | MEDLINE | ID: mdl-32471172

ABSTRACT

Knowledge of the testis structure is important for gastropod taxonomy and phylogeny, particularly for the comparative analysis of sympatric Littorina species. Observing fresh tissue and squashing fixed tissue with gradually increasing pressure, we have recently described a peculiar type of cystic spermatogenesis, rare in mollusks. It has not been documented in most mollusks until now. The testis of adult males consists of numerous lobules filled with multicellular cysts containing germline cells at different stages of differentiation. Each cyst is formed by one cyst cell of somatic origin. Here, we provide evidence for the existence of two ways of cyst formation in Littorina saxatilis. One of them begins with a goniablast cyst formation; it somewhat resembles cyst formation in Drosophila testes. The second way begins with capture of a free spermatogonium by the polyploid cyst cell which is capable to move along the gonad tissues. This way of cyst formation has not been described previously. Our data expand the understanding of the diversity of spermatogenesis types in invertebrates.


Subject(s)
Gastropoda/cytology , Testis/cytology , Animals , Male , Spermatogonia/ultrastructure
3.
Eur J Protistol ; 74: 125691, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32200034

ABSTRACT

We performed karyotyping of Amoeba sp. strain Cont. Based on the results of a cytological analysis, we concluded that the chromosome number of Amoeba sp. strain Cont in mitosis was unstable. In all cases they appeared to be hypergaploid (the basic chromosome number is 30), with monosomy of all chromosomes except four shortest ones. The presence of "extrachromosomes" in the nucleus could prolong until the beginning of the anaphase. It was only then that they were ejected from the nucleus and the euploidy (haploidy) was restored. The stage of endoprophase nucleus was revealed in the cell cycle of Amoeba sp. strain Cont. This stage has not yet been found in other amoebae from the "proteus-type" group that had been previously studied (A. proteus strain B and A. borokensis). The maximum number of endoreplication rounds in the strain Cont amoebae nuclear cycle was 4 or 5. The regular extrusion of chromosomes from the nucleus into the cytoplasm occurred in each of the endoreplication rounds. Comparative cytological analysis of A. proteus strain B, A. borokensis and Amoeba sp. strain Cont karyotypes indicated that strain Cont, though rather close to the former two amoebae, is actually a distinct species.


Subject(s)
Amoeba/cytology , Amoeba/genetics , Chromosomal Instability/genetics , Karyotype , Mitosis/genetics , Species Specificity
4.
J Eukaryot Microbiol ; 67(2): 203-208, 2020 03.
Article in English | MEDLINE | ID: mdl-31691412

ABSTRACT

Amoeba proteus is possibly the best known of all unicellular eukaryotes. At the same time, several quintessential issues of its biology, including some aspects of the cell cycle, remain unsolved. Here, we show that this obligate agamic amoebae and related species have a special type of cyclic polyploidy. Their nucleus has an euploid status only for a small fraction of the cell cycle, during metaphase and telophase. The rest of the time it has an aneuploid status, which is a consequence of polyploidization. Extrusion of "excess" chromatin from the nucleus in late interphase and during prophase results in depolyploidization. Such a strategy of life cycle in unicellular eukaryotes is thought to be the main mechanism of "resetting" the Muller's ratchet and is a satisfactory alternative to the meiotic recombination for agamic protists.


Subject(s)
Amoeba/physiology , Aneuploidy , Cell Cycle , Chromatin/physiology , Polyploidy , Amoeba/genetics
5.
Cell Tissue Res ; 376(3): 457-470, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30778731

ABSTRACT

Although individual stages of spermatogenesis in Littorina saxatilis are well studied at the electron microscopic level, the gonad structure and the spatial localization of gametes at different stages of maturation remain unclear. Using differential-interference contrast (DIC) for observations of fresh tissue we show that the mature testis consists of numerous ovoid lobules forming larger lobes. The lobules of intact mature testes of L. saxatilis are filled with randomly arranged multicellular cysts containing gametes at different stages of maturation. Gametes within a cyst are highly synchronized in respect of the differentiation degree. At the same time, no spatial gradient in the arrangement of cysts according to the maturation degree of gametes in them was observed in any of the studied lobules. The male gonads contain cysts with early spermatids, mid, late spermatids, and spermatozoa. Using silver-staining, DAPI, and chromomycin A3 (CMA3) staining, we identify 20 main types of nucleus organization in differentiating sperm. Premature and mature male gonads contain cysts with a mosaic arrangement as well as rare solitary cyst cells, goniablast cysts, or separate spermatogonia in between them. Our data indicate that the testis structure in L. saxatilis cannot be attributed to the tubular type, as previously thought. It corresponds to the lobular cyst type but individual lobules contain cysts with gametes at the same stage of development. It is similar to the testis structure of several fishes, amphibians, and Drosophila melanogaster. This type of the gonad organization has never been described in gastropods before.


Subject(s)
Gastropoda/growth & development , Gastropoda/ultrastructure , Spermatogenesis , Testis/ultrastructure , Animals , Male , Microscopy, Electron/methods
6.
PLoS Negl Trop Dis ; 5(10): e1335, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21991400

ABSTRACT

BACKGROUND: The mosquito Aedes aegypti is the primary global vector for dengue and yellow fever viruses. Sequencing of the Ae. aegypti genome has stimulated research in vector biology and insect genomics. However, the current genome assembly is highly fragmented with only ~31% of the genome being assigned to chromosomes. A lack of a reliable source of chromosomes for physical mapping has been a major impediment to improving the genome assembly of Ae. aegypti. METHODOLOGY/PRINCIPAL FINDINGS: In this study we demonstrate the utility of mitotic chromosomes from imaginal discs of 4(th) instar larva for cytogenetic studies of Ae. aegypti. High numbers of mitotic divisions on each slide preparation, large sizes, and reproducible banding patterns of the individual chromosomes simplify cytogenetic procedures. Based on the banding structure of the chromosomes, we have developed idiograms for each of the three Ae. aegypti chromosomes and placed 10 BAC clones and a 18S rDNA probe to precise chromosomal positions. CONCLUSION: The study identified imaginal discs of 4(th) instar larva as a superior source of mitotic chromosomes for Ae. aegypti. The proposed approach allows precise mapping of DNA probes to the chromosomal positions and can be utilized for obtaining a high-quality genome assembly of the yellow fever mosquito.


Subject(s)
Aedes/genetics , Chromosomes , Imaginal Discs , Physical Chromosome Mapping/methods , Aedes/growth & development , Animals , Larva/genetics , Larva/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...