Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Indoor Air ; 30(5): 914-924, 2020 09.
Article in English | MEDLINE | ID: mdl-32115779

ABSTRACT

Indoor surfaces are known to support organic films, but their thickness, composition, and variability between environments remain poorly characterized. Alkenes are expected to be a significant component of these films, with the reaction with O3 being a major sink for O3 and source of airborne chemicals. Here, we present a sensitive, microscale, nanospectrophotometric method for quantifying the alkene (C=C bond) content of surface films and demonstrate its applicability in five studies relevant to indoor air chemistry. Collection efficiencies determined for a filter wipe method were ~64%, and the overall detection limit for monoalkenes was ~10 nmol m-2 . On average, painted walls and glass windows sampled across the University of Colorado Boulder campus were coated by ~4 nm thick films containing ~20% alkenes, and a simple calculation indicates that the lifetime for these alkenes due to reaction with O3 is ~1 hour, indicating that the films are highly dynamic. Measurements of alkenes in films of skin oil, pan-fried cooking oils, a terpene-containing cleaner, and on various surfaces in a closed classroom overnight (where carboxyl groups were also measured) provided insight into the effects of chemical and physical processes on film and air composition.


Subject(s)
Air Pollution, Indoor/analysis , Alkenes/analysis , Environmental Monitoring , Air Pollutants , Air Pollution, Indoor/statistics & numerical data , Cooking , Ozone , Terpenes
SELECTION OF CITATIONS
SEARCH DETAIL
...