Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
medRxiv ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38853902

ABSTRACT

IMPORTANCE: Genetic and lifestyle factors contribute to an individual's risk of developing Alzheimer's disease. However, it is unknown whether and how adherence to healthy lifestyles can mitigate the genetic risk of Alzheimer's. OBJECTIVE: The aim of this study is to investigate whether adherence to healthy lifestyles can modify the impact of genetic predisposition to Alzheimer's disease on later-life cognitive decline. DESIGN SETTING AND PARTICIPANTS: This prospective cohort study included 891 adults of European ancestry, aged 40 to 65, who were without dementia and had complete healthy-lifestyle and cognition data during the follow-up. Participants joined the Wisconsin Registry for Alzheimer's Prevention (WRAP) beginning in 2001. We conducted replication analyses using a subsample with similar baseline age range from the Health and Retirement Study (HRS). EXPOSURES: We assessed participants' exposures using a continuous non-APOE polygenic risk score for Alzheimer's, a binary indicator for APOE-ε4 carrier status, and a weighted healthy-lifestyle score, including factors such as no current smoking, regular physical activity, healthy diet, light to moderate alcohol consumption, and frequent cognitive activities. MAIN OUTCOMES AND MEASURES: We z-standardized cognitive scores for global (Preclinical Alzheimer's Cognitive Composite score 3 - PACC3) and domain-specific assessments (delayed recall and immediate learning). RESULTS: We followed 891 individuals for up to 10 years (mean [SD] baseline age, 58 [6] years, 31% male, 38% APOE-ε4 carriers). After false discovery rate (FDR) correction, we found statistically significant PRS × lifestyle × age interactions on preclinical cognitive decline but the evidence is stronger among APOE-ε4 carriers. Among APOE-ε4 carriers, PRS-related differences in overall and memory-related domains between people scoring 0-1 and 4-5 regarding healthy lifestyles became evident around age 67 after FDR correction. These findings were robust across several sensitivity analyses and were replicated in the population-based HRS. CONCLUSION: A favorable lifestyle can mitigate the genetic risk associated with current known non-APOE genetic variants for longitudinal cognitive decline, and these protective effects are particularly pronounced among APOE-ε4 carriers.

2.
Alzheimers Dement ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809917

ABSTRACT

INTRODUCTION: Recent genome-wide association studies (GWAS) have reported a genetic association with Alzheimer's disease (AD) at the TNIP1/GPX3 locus, but the mechanism is unclear. METHODS: We used cerebrospinal fluid (CSF) proteomics data to test (n = 137) and replicate (n = 446) the association of glutathione peroxidase 3 (GPX3) with CSF biomarkers (including amyloid and tau) and the GWAS-implicated variants (rs34294852 and rs871269). RESULTS: CSF GPX3 levels decreased with amyloid and tau positivity (analysis of variance P = 1.5 × 10-5) and higher CSF phosphorylated tau (p-tau) levels (P = 9.28 × 10-7). The rs34294852 minor allele was associated with decreased GPX3 (P = 0.041). The replication cohort found associations of GPX3 with amyloid and tau positivity (P = 2.56 × 10-6) and CSF p-tau levels (P = 4.38 × 10-9). DISCUSSION: These results suggest variants in the TNIP1 locus may affect the oxidative stress response in AD via altered GPX3 levels. HIGHLIGHTS: Cerebrospinal fluid (CSF) glutathione peroxidase 3 (GPX3) levels decreased with amyloid and tau positivity and higher CSF phosphorylated tau. The minor allele of rs34294852 was associated with lower CSF GPX3. levels when also controlling for amyloid and tau category. GPX3 transcript levels in the prefrontal cortex were lower in Alzheimer's disease than controls. rs34294852 is an expression quantitative trait locus for GPX3 in blood, neutrophils, and microglia.

3.
Elife ; 122024 May 24.
Article in English | MEDLINE | ID: mdl-38787369

ABSTRACT

Rich data from large biobanks, coupled with increasingly accessible association statistics from genome-wide association studies (GWAS), provide great opportunities to dissect the complex relationships among human traits and diseases. We introduce BADGERS, a powerful method to perform polygenic score-based biobank-wide association scans. Compared to traditional approaches, BADGERS uses GWAS summary statistics as input and does not require multiple traits to be measured in the same cohort. We applied BADGERS to two independent datasets for late-onset Alzheimer's disease (AD; n=61,212). Among 1738 traits in the UK biobank, we identified 48 significant associations for AD. Family history, high cholesterol, and numerous traits related to intelligence and education showed strong and independent associations with AD. Furthermore, we identified 41 significant associations for a variety of AD endophenotypes. While family history and high cholesterol were strongly associated with AD subgroups and pathologies, only intelligence and education-related traits predicted pre-clinical cognitive phenotypes. These results provide novel insights into the distinct biological processes underlying various risk factors for AD.


Subject(s)
Alzheimer Disease , Biological Specimen Banks , Endophenotypes , Genome-Wide Association Study , Alzheimer Disease/genetics , Humans , Risk Factors , Male , Female , United Kingdom/epidemiology , Aged , Genetic Predisposition to Disease , Multifactorial Inheritance/genetics , Aged, 80 and over
4.
Eur J Nucl Med Mol Imaging ; 51(4): 1035-1049, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38049659

ABSTRACT

PURPOSE: The main objectives were to test whether (1) a decrease in myelin is associated with enhanced rate of fibrillar tau accumulation and cognitive decline in Alzheimer's disease, and (2) whether apolipoprotein E (APOE) ε4 genotype is associated with worse myelin decrease and thus tau accumulation. METHODS: To address our objectives, we repurposed florbetapir-PET as a marker of myelin in the white matter (WM) based on previous validation studies showing that beta-amyloid (Aß) PET tracers bind to WM myelin. We assessed 43 Aß-biomarker negative (Aß-) cognitively normal participants and 108 Aß+ participants within the AD spectrum with florbetapir-PET at baseline and longitudinal flortaucipir-PET as a measure of fibrillar tau (tau-PET) over ~ 2 years. In linear regression analyses, we tested florbetapir-PET in the whole WM and major fiber tracts as predictors of tau-PET accumulation in a priori defined regions of interest (ROIs) and fiber-tract projection areas. In mediation analyses we tested whether tau-PET accumulation mediates the effect of florbetapir-PET in the whole WM on cognition. Finally, we assessed the role of myelin alteration on the association between APOE and tau-PET accumulation. RESULTS: Lower florbetapir-PET in the whole WM or at a given fiber tract was predictive of faster tau-PET accumulation in Braak stages or the connected grey matter areas in Aß+ participants. Faster tau-PET accumulation in higher cortical brain areas mediated the association between a decrease in florbetapir-PET in the WM and a faster rate of decline in global cognition and episodic memory. APOE ε4 genotype was associated with a worse decrease in the whole WM florbetapir-PET and thus enhanced tau-PET accumulation. CONCLUSION: Myelin alterations are associated in an APOE ε4 dependent manner with faster tau progression and cognitive decline, and may therefore play a role in the etiology of AD.


Subject(s)
Alzheimer Disease , Aniline Compounds , Cognitive Dysfunction , Demyelinating Diseases , Ethylene Glycols , Humans , Apolipoprotein E4/genetics , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Apolipoproteins E , Brain/metabolism , Cognitive Dysfunction/metabolism , Demyelinating Diseases/metabolism , tau Proteins/metabolism , Positron-Emission Tomography
5.
Alzheimers Dement ; 20(2): 1063-1075, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37858606

ABSTRACT

INTRODUCTION: Variation in preclinical cognitive decline suggests additional genetic factors related to Alzheimer's disease (eg, a non-APOE polygenic risk score [PRS]) may interact with the APOE ε4 allele to influence cognitive decline. METHODS: We tested the PRS × APOE ε4 × age interaction on preclinical cognition using longitudinal data from the Wisconsin Registry for Alzheimer's Prevention. All analyses were fitted using a linear mixed-effects model and adjusted for within individual/family correlation among 1190 individuals. RESULTS: We found statistically significant PRS × APOE ε4 × age interactions on immediate learning (P = 0.038), delayed recall (P < 0.001), and Preclinical Alzheimer's Cognitive Composite 3 score (P = 0.026). PRS-related differences in overall and memory-related cognitive domains between people with and without APOE ε4 emerge around age 70, with a much stronger adverse PRS effect among APOE ε4 carriers. The findings were replicated in a population-based cohort. DISCUSSIONS: APOE ε4 can modify the association between PRS and cognition decline. HIGHLIGHTS: APOE ε4 can modify the association between polygenic risk scores (PRSs) and longitudinal cognition decline, with the modifying effects more pronounced when the PRS is constructed using a conservative P threshold (eg, P < 5e-8 ). The adverse genetic effect caused by the combined effect of the currently known genetic variants is more detrimental among APOE Îµ4 carriers around age 70. Individuals who are APOE Îµ4 carriers with high PRSs are the most vulnerable to the harmful effects caused by genetic burden.


Subject(s)
Alzheimer Disease , Humans , Aged , Alzheimer Disease/genetics , Alzheimer Disease/psychology , Apolipoprotein E4/genetics , Genetic Risk Score , Cognition , Apolipoproteins E/genetics , Aging/genetics , Aging/psychology
6.
Sci Rep ; 13(1): 18924, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37963908

ABSTRACT

Age-related disease may be mediated by low levels of chronic inflammation ("inflammaging"). Recent work suggests that gut microbes can contribute to inflammation via degradation of the intestinal barrier. While aging and age-related diseases including Alzheimer's disease (AD) are linked to altered microbiome composition and higher levels of gut microbial components in systemic circulation, the role of intestinal inflammation remains unclear. To investigate whether greater gut inflammation is associated with advanced age and AD pathology, we assessed fecal samples from older adults to measure calprotectin, an established marker of intestinal inflammation which is elevated in diseases of gut barrier integrity. Multiple regression with maximum likelihood estimation and Satorra-Bentler corrections were used to test relationships between fecal calprotectin and clinical diagnosis, participant age, cerebrospinal fluid biomarkers of AD pathology, amyloid burden measured using 11C-Pittsburgh compound B positron emission tomography (PiB PET) imaging, and performance on cognitive tests measuring executive function and verbal learning and recall. Calprotectin levels were elevated in advanced age and were higher in participants diagnosed with amyloid-confirmed AD dementia. Additionally, among individuals with AD dementia, higher calprotectin was associated with greater amyloid burden as measured with PiB PET. Exploratory analyses indicated that calprotectin levels were also associated with cerebrospinal fluid markers of AD, and with lower verbal memory function even among cognitively unimpaired participants. Taken together, these findings suggest that intestinal inflammation is linked with brain pathology even in the earliest disease stages. Moreover, intestinal inflammation may exacerbate the progression toward AD.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Aged , Alzheimer Disease/metabolism , Cohort Studies , Amyloid beta-Peptides/metabolism , Brain/metabolism , Tomography, X-Ray Computed , Positron-Emission Tomography/methods , Amyloid/metabolism , Leukocyte L1 Antigen Complex/metabolism , Biomarkers/metabolism , tau Proteins/metabolism , Cognitive Dysfunction/pathology
7.
Front Aging Neurosci ; 15: 1214932, 2023.
Article in English | MEDLINE | ID: mdl-37719875

ABSTRACT

Introduction: Metabolomics technology facilitates studying associations between small molecules and disease processes. Correlating metabolites in cerebrospinal fluid (CSF) with Alzheimer's disease (AD) CSF biomarkers may elucidate additional changes that are associated with early AD pathology and enhance our knowledge of the disease. Methods: The relative abundance of untargeted metabolites was assessed in 161 individuals from the Wisconsin Registry for Alzheimer's Prevention. A metabolome-wide association study (MWAS) was conducted between 269 CSF metabolites and protein biomarkers reflecting brain amyloidosis, tau pathology, neuronal and synaptic degeneration, and astrocyte or microglial activation and neuroinflammation. Linear mixed-effects regression analyses were performed with random intercepts for sample relatedness and repeated measurements and fixed effects for age, sex, and years of education. The metabolome-wide significance was determined by a false discovery rate threshold of 0.05. The significant metabolites were replicated in 154 independent individuals from then Wisconsin Alzheimer's Disease Research Center. Mendelian randomization was performed using genome-wide significant single nucleotide polymorphisms from a CSF metabolites genome-wide association study. Results: Metabolome-wide association study results showed several significantly associated metabolites for all the biomarkers except Aß42/40 and IL-6. Genetic variants associated with metabolites and Mendelian randomization analysis provided evidence for a causal association of metabolites for soluble triggering receptor expressed on myeloid cells 2 (sTREM2), amyloid ß (Aß40), α-synuclein, total tau, phosphorylated tau, and neurogranin, for example, palmitoyl sphingomyelin (d18:1/16:0) for sTREM2, and erythritol for Aß40 and α-synuclein. Discussion: This study provides evidence that CSF metabolites are associated with AD-related pathology, and many of these associations may be causal.

8.
medRxiv ; 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37398140

ABSTRACT

INTRODUCTION: Variation in preclinical cognitive decline suggests additional genetic factors related to Alzheimer's disease (e.g., a non-APOE polygenic risk scores [PRS]) may interact with the APOE ε4 allele to influence cognitive decline. METHODS: We tested the PRS×APOE ε4×age interaction on preclinical cognition using longitudinal data from the Wisconsin Registry for Alzheimer's Prevention. All analyses were fitted using a linear mixed-effects model and adjusted for within individual/family correlation among 1,190 individuals. RESULTS: We found statistically significant PRS×APOE ε4×age interactions on immediate learning (P=0.038), delayed recall (P<0.001), and Preclinical Alzheimer's Cognitive Composite 3 score (P=0.026). PRS-related differences in overall and memory-related cognitive domains between people with and without APOE ε4 emerge around age 70, with a much stronger adverse PRS effect among APOE ε4 carriers. The findings were replicated in a population-based cohort. DISCUSSION: APOE ε4 can modify the association between PRS and cognition decline.

9.
J Alzheimers Dis ; 94(4): 1587-1605, 2023.
Article in English | MEDLINE | ID: mdl-37482996

ABSTRACT

BACKGROUND: Genetic scores for late-onset Alzheimer's disease (LOAD) have been associated with preclinical cognitive decline and biomarker variations. Compared with an overall polygenic risk score (PRS), a pathway-specific PRS (p-PRS) may be more appropriate in predicting a specific biomarker or cognitive component underlying LOAD pathology earlier in the lifespan. OBJECTIVE: In this study, we leveraged longitudinal data from the Wisconsin Registry for Alzheimer's Prevention and explored changing patterns in cognition and biomarkers at various age points along six biological pathways. METHODS: PRS and p-PRSs with and without APOE were constructed separately based on the significant SNPs associated with LOAD in a recent genome-wide association study meta-analysis and compared to APOE alone. We used a linear mixed-effects model to assess the association between PRS/p-PRSs and cognitive trajectories among 1,175 individuals. We also applied the model to the outcomes of cerebrospinal fluid biomarkers in a subset. Replication analyses were performed in an independent sample. RESULTS: We found p-PRSs and the overall PRS can predict preclinical changes in cognition and biomarkers. The effects of PRS/p-PRSs on rate of change in cognition, amyloid-ß, and tau outcomes are dependent on age and appear earlier in the lifespan when APOE is included in these risk scores compared to when APOE is excluded. CONCLUSION: In addition to APOE, the p-PRSs can predict age-dependent changes in amyloid-ß, tau, and cognition. Once validated, they could be used to identify individuals with an elevated genetic risk of accumulating amyloid-ß and tau, long before the onset of clinical symptoms.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnosis , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Peptides/cerebrospinal fluid , Apolipoproteins E/genetics , Biomarkers/cerebrospinal fluid , Cognition , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/genetics , Cognitive Dysfunction/metabolism , Genome-Wide Association Study , Risk Factors , tau Proteins/genetics , tau Proteins/cerebrospinal fluid
10.
Res Sq ; 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37333177

ABSTRACT

Brain metabolism perturbation can contribute to traits and diseases. We conducted the first large-scale CSF and brain genome-wide association studies, which identified 219 independent associations (59.8% novel) for 144 CSF metabolites and 36 independent associations (55.6% novel) for 34 brain metabolites. Most of the novel signals (97.7% and 70.0% in CSF and brain) were tissue specific. We also integrated MWAS-FUSION approaches with Mendelian Randomization and colocalization to identify causal metabolites for 27 brain and human wellness phenotypes and identified eight metabolites to be causal for eight traits (11 relationships). Low mannose level was causal to bipolar disorder and as dietary supplement it may provide therapeutic benefits. Low galactosylglycerol level was found causal to Parkinson's Disease (PD). Our study expanded the knowledge of MQTL in central nervous system, provided insights into human wellness, and successfully demonstrates the utility of combined statistical approaches to inform interventions.

11.
Alzheimers Dement ; 19(12): 5447-5470, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37218097

ABSTRACT

INTRODUCTION: A hallmark of Alzheimer's disease (AD) is the aggregation of proteins (amyloid beta [A] and hyperphosphorylated tau [T]) in the brain, making cerebrospinal fluid (CSF) proteins of particular interest. METHODS: We conducted a CSF proteome-wide analysis among participants of varying AT pathology (n = 137 participants; 915 proteins) with nine CSF biomarkers of neurodegeneration and neuroinflammation. RESULTS: We identified 61 proteins significantly associated with the AT category (P < 5.46 × 10-5 ) and 636 significant protein-biomarker associations (P < 6.07 × 10-6 ). Proteins from glucose and carbon metabolism pathways were enriched among amyloid- and tau-associated proteins, including malate dehydrogenase and aldolase A, whose associations with tau were replicated in an independent cohort (n = 717). CSF metabolomics identified and replicated an association of succinylcarnitine with phosphorylated tau and other biomarkers. DISCUSSION: These results implicate glucose and carbon metabolic dysregulation and increased CSF succinylcarnitine levels with amyloid and tau pathology in AD. HIGHLIGHTS: Cerebrospinal fluid (CSF) proteome enriched for extracellular, neuronal, immune, and protein processing. Glucose/carbon metabolic pathways enriched among amyloid/tau-associated proteins. Key glucose/carbon metabolism protein associations independently replicated. CSF proteome outperformed other omics data in predicting amyloid/tau positivity. CSF metabolomics identified and replicated a succinylcarnitine-phosphorylated tau association.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Proteome , tau Proteins/cerebrospinal fluid , Amyloid/metabolism , Biomarkers/cerebrospinal fluid , Metabolome , Peptide Fragments/cerebrospinal fluid
12.
J Alzheimers Dis ; 92(2): 395-409, 2023.
Article in English | MEDLINE | ID: mdl-36744333

ABSTRACT

BACKGROUND: Our understanding of the pathophysiology underlying Alzheimer's disease (AD) has benefited from genomic analyses, including those that leverage polygenic risk score (PRS) models of disease. The use of functional annotation has been able to improve the power of genomic models. OBJECTIVE: We sought to leverage genomic functional annotations to build tissue-specific AD PRS models and study their relationship with AD and its biomarkers. METHODS: We built 13 tissue-specific AD PRS and studied the scores' relationships with AD diagnosis, cerebrospinal fluid (CSF) amyloid, CSF tau, and other CSF biomarkers in two longitudinal cohort studies of AD. RESULTS: The AD PRS model that was most predictive of AD diagnosis (even without APOE) was the liver AD PRS: n = 1,115; odds ratio = 2.15 (1.67-2.78), p = 3.62×10-9. The liver AD PRS was also statistically significantly associated with cerebrospinal fluid biomarker evidence of amyloid-ß (Aß42:Aß40 ratio, p = 3.53×10-6) and the phosphorylated tau:amyloid-ß ratio (p = 1.45×10-5). CONCLUSION: These findings provide further evidence of the role of the liver-functional genome in AD and the benefits of incorporating functional annotation into genomic research.


Subject(s)
Alzheimer Disease , Liver , Multifactorial Inheritance , Adult , Aged , Humans , Middle Aged , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/diagnosis , Alzheimer Disease/genetics , Amyloid beta-Peptides/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Genome, Human , Genomics , Liver/metabolism , Longitudinal Studies , Models, Genetic , Multifactorial Inheritance/genetics , Organ Specificity , Risk Factors
13.
medRxiv ; 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36778431

ABSTRACT

Background: Genetic scores for late-onset Alzheimer's disease (LOAD) have been associated with preclinical cognitive decline and biomarker variations. Compared with an overall polygenic risk score (PRS), a pathway-specific PRS (p-PRS) may be more appropriate in predicting a specific biomarker or cognitive component underlying LOAD pathology earlier in the lifespan. Objective: In this study, we leveraged 10 years of longitudinal data from initially cognitively unimpaired individuals in the Wisconsin Registry for Alzheimer's Prevention and explored changing patterns in cognition and biomarkers at various age points along six biological pathways. Methods: PRS and p-PRSs with and without apolipoprotein E ( APOE ) were constructed separately based on the significant SNPs associated with LOAD in a recent genome-wide association study meta-analysis and compared to APOE alone. We used a linear mixed-effects model to assess the association between PRS/p-PRSs and global/domain-specific cognitive trajectories among 1,175 individuals. We also applied the model to the outcomes of cerebrospinal fluid biomarkers for beta-amyloid 42 (Aß42), Aß42/40 ratio, total tau, and phosphorylated tau in a subset. Replication analyses were performed in an independent sample. Results: We found p-PRSs and the overall PRS can predict preclinical changes in cognition and biomarkers. The effects of p-PRSs/PRS on rate of change in cognition, beta-amyloid, and tau outcomes are dependent on age and appear earlier in the lifespan when APOE is included in these risk scores compared to when APOE is excluded. Conclusion: In addition to APOE , the p-PRSs can predict age-dependent changes in beta-amyloid, tau, and cognition. Once validated, they could be used to identify individuals with an elevated genetic risk of accumulating beta-amyloid and tau, long before the onset of clinical symptoms.

14.
Alzheimers Dement ; 19(8): 3406-3416, 2023 08.
Article in English | MEDLINE | ID: mdl-36795776

ABSTRACT

INTRODUCTION: Apolipoprotein E (APOE) ε4-carrier status or ε4 allele count are included in analyses to account for the APOE genetic effect on Alzheimer's disease (AD); however, this does not account for protective effects of APOE ε2 or heterogeneous effect of ε2, ε3, and ε4 haplotypes. METHODS: We leveraged results from an autopsy-confirmed AD study to generate a weighted risk score for APOE (APOE-npscore). We regressed cerebrospinal fluid (CSF) amyloid and tau biomarkers on APOE variables from the Wisconsin Registry for Alzheimer's Prevention (WRAP), Wisconsin Alzheimer's Disease Research Center (WADRC), and Alzheimer's Disease Neuroimaging Initiative (ADNI). RESULTS: The APOE-npscore explained more variance and provided a better model fit for all three CSF measures than APOE ε4-carrier status and ε4 allele count. These findings were replicated in ADNI and observed in subsets of cognitively unimpaired (CU) participants. DISCUSSION: The APOE-npscore reflects the genetic effect on neuropathology and provides an improved method to account for APOE in AD-related analyses.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/pathology , Amyloid beta-Peptides/cerebrospinal fluid , Apolipoprotein E4/genetics , Apolipoproteins E/genetics , Genotype , Risk Factors , tau Proteins/genetics , tau Proteins/cerebrospinal fluid
15.
J Alzheimers Dis ; 90(2): 667-680, 2022.
Article in English | MEDLINE | ID: mdl-36155504

ABSTRACT

BACKGROUND: Sphingomyelin (SM) levels have been associated with Alzheimer's disease (AD), but the association direction has been inconsistent and research on cerebrospinal fluid (CSF) SMs has been limited by sample size, breadth of SMs examined, and diversity of biomarkers available. OBJECTIVE: Here, we seek to build on our understanding of the role of SM metabolites in AD by studying a broad range of CSF SMs and biomarkers of AD, neurodegeneration, and neuroinflammation. METHODS: Leveraging two longitudinal AD cohorts with metabolome-wide CSF metabolomics data (n = 502), we analyzed the relationship between the levels of 12 CSF SMs, and AD diagnosis and biomarkers of pathology, neurodegeneration, and neuroinflammation using logistic, linear, and linear mixed effects models. RESULTS: No SMs were significantly associated with AD diagnosis, mild cognitive impairment, or amyloid biomarkers. Phosphorylated tau, neurofilament light, α-synuclein, neurogranin, soluble triggering receptor expressed on myeloid cells 2, and chitinase-3-like-protein 1 were each significantly, positively associated with at least 5 of the SMs. CONCLUSION: The associations between SMs and biomarkers of neurodegeneration and neuroinflammation, but not biomarkers of amyloid or diagnosis of AD, point to SMs as potential biomarkers for neurodegeneration and neuroinflammation that may not be AD-specific.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/pathology , tau Proteins/cerebrospinal fluid , Sphingomyelins , Neuroinflammatory Diseases , Cognitive Dysfunction/diagnosis , Biomarkers/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid
16.
Brain Commun ; 4(2): fcac066, 2022.
Article in English | MEDLINE | ID: mdl-35425899

ABSTRACT

Preclinical Alzheimer's disease describes some individuals who harbour Alzheimer's pathologies but are asymptomatic. For this study, we hypothesized that genetic variation may help protect some individuals from Alzheimer's-related neurodegeneration. We therefore conducted a genome-wide association study using 5 891 064 common variants to assess whether genetic variation modifies the association between baseline beta-amyloid, as measured by both cerebrospinal fluid and positron emission tomography, and neurodegeneration defined using MRI measures of hippocampal volume. We combined and jointly analysed genotype, biomarker and neuroimaging data from non-Hispanic white individuals who were enrolled in four longitudinal ageing studies (n = 1065). Using regression models, we examined the interaction between common genetic variants (Minor Allele Frequency >0.01), including APOE-ɛ4 and APOE-ɛ2, and baseline cerebrospinal levels of amyloid (CSF Aß42) on baseline hippocampal volume and the longitudinal rate of hippocampal atrophy. For targeted replication of top findings, we analysed an independent dataset (n = 808) where amyloid burden was assessed by Pittsburgh Compound B ([11C]-PiB) positron emission tomography. In this study, we found that APOE-ɛ4 modified the association between baseline CSF Aß42 and hippocampal volume such that APOE-ɛ4 carriers showed more rapid atrophy, particularly in the presence of enhanced amyloidosis. We also identified a novel locus on chromosome 3 that interacted with baseline CSF Aß42. Minor allele carriers of rs62263260, an expression quantitative trait locus for the SEMA5B gene (P = 1.46 × 10-8; 3:122675327) had more rapid neurodegeneration when amyloid burden was high and slower neurodegeneration when amyloid was low. The rs62263260 × amyloid interaction on longitudinal change in hippocampal volume was replicated in an independent dataset (P = 0.0112) where amyloid burden was assessed by positron emission tomography. In addition to supporting the established interaction between APOE and amyloid on neurodegeneration, our study identifies a novel locus that modifies the association between beta-amyloid and hippocampal atrophy. Annotation results may implicate SEMA5B, a gene involved in synaptic pruning and axonal guidance, as a high-quality candidate for functional confirmation and future mechanistic analysis.

17.
Alzheimers Dement (Amst) ; 13(1): e12167, 2021.
Article in English | MEDLINE | ID: mdl-33969169

ABSTRACT

INTRODUCTION: Cerebrospinal fluid (CSF) total tau (t-tau) and phosphorylated tau (p-tau) are biomarkers of Alzheimer's disease (AD), yet much is unknown about AD-associated changes in tau metabolism and tau tangle etiology. METHODS: We assessed the variation of t-tau and p-tau explained by 38 previously identified CSF metabolites using linear regression models in middle-age controls from the Wisconsin Alzheimer's Disease Research Center, and predicted AD/mild cognitive impairment (MCI) versus an independent set of older controls using metabolites selected by the least absolute shrinkage and selection operator (LASSO). RESULTS: The 38 CSF metabolites explained 70.3% and 75.7% of the variance in t-tau and p-tau, respectively. Of these, seven LASSO-selected metabolites improved the prediction ability of AD/MCI versus older controls (area under the curve score increased from 0.92 to 0.97 and 0.78 to 0.93) compared to the base model. DISCUSSION: These tau-correlated CSF metabolites increase AD/MCI prediction accuracy and may provide insight into tau tangle etiology.

18.
Neurol Genet ; 7(2): e571, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33884297

ABSTRACT

OBJECTIVE: To evaluate for racial differences in triggering receptor expressed on myeloid cells 2 (TREM2), a key immune mediator in Alzheimer disease, the levels of CSF soluble TREM2 (sTREM2), and the frequency of associated genetic variants were compared in groups of individuals who self-reported their race as African American (AA) or non-Hispanic White (NHW). METHODS: Community-dwelling older research participants underwent measurement of CSF sTREM2 concentrations and genetic analyses. RESULTS: The primary cohort included 91 AAs and 868 NHWs. CSF sTREM2 levels were lower in the AA compared with the NHW group (1,336 ± 470 vs 1,856 ± 624 pg/mL, p < 0.0001). AAs were more likely to carry TREM2 coding variants (15% vs 3%, p < 0.0001), which were associated with lower CSF sTREM2. AAs were less likely to carry the rs1582763 minor allele (8% vs 37%, p < 0.0001), located near MS4A4A, which was associated with higher CSF sTREM2. These findings were replicated in an independent cohort of 23 AAs and 917 NHWs: CSF sTREM2 levels were lower in the AA group (p = 0.03), AAs were more likely to carry coding TREM2 variants (22% vs 4%, p = 0.002), and AAs were less likely to carry the rs1582763 minor allele (16% vs 37%, p = 0.003). CONCLUSIONS: On average, AAs had lower CSF sTREM2 levels compared with NHWs, potentially because AAs are more likely to carry genetic variants associated with lower CSF sTREM2 levels. Importantly, CSF sTREM2 reflects TREM2-mediated microglial activity, a critical step in the immune response to amyloid plaques. These findings suggest that race may be associated with risk for genetic variants that influence Alzheimer disease-related inflammation.

19.
Commun Biol ; 4(1): 63, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33437055

ABSTRACT

The study of metabolomics and disease has enabled the discovery of new risk factors, diagnostic markers, and drug targets. For neurological and psychiatric phenotypes, the cerebrospinal fluid (CSF) is of particular importance. However, the CSF metabolome is difficult to study on a large scale due to the relative complexity of the procedure needed to collect the fluid. Here, we present a metabolome-wide association study (MWAS), which uses genetic and metabolomic data to impute metabolites into large samples with genome-wide association summary statistics. We conduct a metabolome-wide, genome-wide association analysis with 338 CSF metabolites, identifying 16 genotype-metabolite associations (metabolite quantitative trait loci, or mQTLs). We then build prediction models for all available CSF metabolites and test for associations with 27 neurological and psychiatric phenotypes, identifying 19 significant CSF metabolite-phenotype associations. Our results demonstrate the feasibility of MWAS to study omic data in scarce sample types.


Subject(s)
Alzheimer Disease/cerebrospinal fluid , Cerebrospinal Fluid/metabolism , Cognitive Dysfunction/cerebrospinal fluid , Aged , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Brain/metabolism , Case-Control Studies , Cognitive Dysfunction/genetics , Cognitive Dysfunction/metabolism , Cohort Studies , Female , Genome-Wide Association Study , Humans , Male , Metabolomics/methods , Middle Aged , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci
20.
EMBO Mol Med ; 12(9): e12308, 2020 09 07.
Article in English | MEDLINE | ID: mdl-32790063

ABSTRACT

Microglia activation is the brain's major immune response to amyloid plaques in Alzheimer's disease (AD). Both cerebrospinal fluid (CSF) levels of soluble TREM2 (sTREM2), a biomarker of microglia activation, and microglia PET are increased in AD; however, whether an increase in these biomarkers is associated with reduced amyloid-beta (Aß) accumulation remains unclear. To address this question, we pursued a two-pronged translational approach. Firstly, in non-demented and demented individuals, we tested CSF sTREM2 at baseline to predict (i) amyloid PET changes over ∼2 years and (ii) tau PET cross-sectionally assessed in a subset of patients. We found higher CSF sTREM2 associated with attenuated amyloid PET increase and lower tau PET. Secondly, in the AppNL-G-F mouse model of amyloidosis, we studied baseline 18 F-GE180 microglia PET and longitudinal amyloid PET to test the microglia vs. Aß association, without any confounding co-pathologies often present in AD patients. Higher microglia PET at age 5 months was associated with a slower amyloid PET increase between ages 5-to-10 months. In conclusion, higher microglia activation as determined by CSF sTREM2 or microglia PET shows protective effects on subsequent amyloid accumulation.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Animals , Biomarkers , Humans , Membrane Glycoproteins , Mice , Microglia , Receptors, Immunologic , tau Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...