Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioact Mater ; 19: 217-236, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35510175

ABSTRACT

Out of the wide range of calcium phosphate (CaP) biomaterials, calcium phosphate bone cements (CPCs) have attracted increased attention since their discovery in the 1980s due to their valuable properties such as bioactivity, osteoconductivity, injectability, hardening ability through a low-temperature setting reaction and moldability. Thereafter numerous researches have been performed to enhance the properties of CPCs. Nonetheless, low mechanical performance of CPCs limits their clinical application in load bearing regions of bone. Also, the in vivo resorption and replacement of CPC with new bone tissue is still controversial, thus further improvements of high clinical importance are required. Bioactive glasses (BGs) are biocompatible and able to bond to bone, stimulating new bone growth while dissolving over time. In the last decades extensive research has been performed analyzing the role of BGs in combination with different CaPs. Thus, the focal point of this review paper is to summarize the available research data on how injectable CPC properties could be improved or affected by the addition of BG as a secondary powder phase. It was found that despite the variances of setting time and compressive strength results, desirable injectable properties of bone cements can be achieved by the inclusion of BGs into CPCs. The published data also revealed that the degradation rate of CPCs is significantly improved by BG addition. Moreover, the presence of BG in CPCs improves the in vitro osteogenic differentiation and cell response as well as the tissue-material interaction in vivo.

2.
Article in English | MEDLINE | ID: mdl-34211622

ABSTRACT

Microwave radiometry has provided valuable spaceborne observations of Earth's geophysical properties for decades. The recent SMOS, Aquarius, and SMAP satellites have demonstrated the value of measurements at 1400 MHz for observing surface soil moisture, sea surface salinity, sea ice thickness, soil freeze/thaw state, and other geophysical variables. However, the information obtained is limited by penetration through the subsurface at 1400 MHz and by a reduced sensitivity to surface salinity in cold or wind-roughened waters. Recent airborne experiments have shown the potential of brightness temperature measurements from 500-1400 MHz to address these limitations by enabling sensing of soil moisture and sea ice thickness to greater depths, sensing of temperature deep within ice sheets, improved sensing of sea salinity in cold waters, and enhanced sensitivity to soil moisture under vegetation canopies. However, the absence of significant spectrum reserved for passive microwave measurements in the 500-1400 MHz band requires both an opportunistic sensing strategy and systems for reducing the impact of radio-frequency interference. Here, we summarize the potential advantages and applications of 500-1400 MHz microwave radiometry for Earth observation and review recent experiments and demonstrations of these concepts. We also describe the remaining questions and challenges to be addressed in advancing to future spaceborne operation of this technology along with recommendations for future research activities.

3.
Mater Sci Eng C Mater Biol Appl ; 120: 111758, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33545899

ABSTRACT

The aim of this work was to develop injectable bone substitutes (IBS) consisting of zoledronic acid (ZOL) and graphene oxide (GO) for the treatment of osteoporosis and metastasis. The powder phase was consisting of tetra calcium phosphate (TTCP), dicalcium phosphate dihyrate (DCPD) and calcium sulfate dihyrate (CSD), while the liquid phase comprised of methylcellulose (MC), gelatin and sodium citrate dihyrate (SC), ZOL and GO. The structural analysis of IBS samples was performed by Fourier Transform Infrared Spectroscopy (FTIR). Injectability, setting time and mechanical strength were investigated. Additionally, in vitro properties of synthesized IBS were analyzed by means of bioactivity, ZOL release, degradation, pH variation, PO43- ion release and cell studies. Overall, all IBS exhibited excellent injectability results with no phase separation. The setting time of the IBS was prolonged with ZOL incorporation while the prolonging effect decreased with GO incorporation. The mechanical properties decreased with ZOL addition and increased with the incorporation of GO. The maximum compressive strength was found as 25.73 MPa for 1.5GO0ZOL incorporated IBS. In vitro results showed that ZOL and GO loaded IBS also revealed clinically suitable properties with controlled release of ZOL, pH value and PO43- ions. In in vitro cell studies, both the inhibitory effect of ZOL and GO loaded IBS on MCF-7 cells and proliferative effect on osteoblast cells were observed. Moreover, the prepared IBS led to proliferation, differentiation and mineralization of osteoblasts. The results are encouraging and support the conclusion that developed IBS have promising physical and in vitro properties which needs to be further validated by gene expression and in vivo studies.


Subject(s)
Bone Substitutes , Graphite , Compressive Strength , Zoledronic Acid/pharmacology
4.
Materials (Basel) ; 11(4)2018 Apr 14.
Article in English | MEDLINE | ID: mdl-29662018

ABSTRACT

In this study, a novel injectable bone substitute (IBS) was prepared by incorporating a bioceramic powder in a polymeric solution comprising of methylcellulose (MC), gelatin and citric acid. Methylcellulose was utilized as the polymeric matrix due to its thermoresponsive properties and biocompatibility. 2.5 wt % gelatin and 3 wt % citric acid were added to the MC to adjust the rheological properties of the prepared IBS. Then, 0, 20, 30 and 50 wt % of the bioceramic component comprising tetracalcium phosphate/hydroxyapatite (TTCP/HA), dicalcium phosphate dehydrate (DCPD) and calcium sulfate dehydrate (CSD) were added into the prepared polymeric component. The prepared IBS samples had a chewing gum-like consistency. IBS samples were investigated in terms of their chemical structure, rheological characteristics, and mechanical properties. After that, in vitro degradation studies were carried out by measurement of pH and % remaining weight. Viscoelastic characteristics of the samples indicated that all of the prepared IBS were injectable and they hardened at approximately 37 °C. Moreover, with increasing wt % of the bioceramic component, the degradation rate of the samples significantly reduced and the mechanical properties were improved. Therefore, the experimental results indicated that the P50 mix may be a promising candidates to fill bone defects and assist bone recovery for non-load bearing applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...