Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
1.
Reprod Toxicol ; : 108654, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960207

ABSTRACT

Testicular torsion (TT) is a urological condition that can result in infertility in men. The etiopathogenesis of TT includes ischemia/reperfusion injury (IRI) characterized by oxidative stress (OS), inflammation and apoptosis resulting from increased levels of free radicals. Usnic acid (UA), a dibenzofuran, is one of the most common metabolites found in lichens and is known to possess powerful antioxidant properties. The aim of this study was to investigate the potential protective activity of UA in an experimental testicular IRI model for the first time. A total of 18 rats were randomly assigned to three groups (n=6): sham control, IRI and IRI+UA. The IRI groups underwent a four-hour period of ischemia and a two-hour period of reperfusion. The OS, inflammation, endoplasmic reticulum stress (ERS) and apoptosis markers in testicular tissue were evaluated using colorimetric methods. Furthermore, tissue samples were subjected to histological examination, with staining using hematoxylin and eosin. Histopathological findings supported by increased OS, inflammation, ERS and apoptosis levels were obtained in IRI group compared with sham control group. However, UA treatment restored these pathological and biochemical changes. Although this study provides the first preliminary evidence that UA may be used as a useful molecule against testicular IRI, further extensive molecular preclinical studies should be performed before clinical use is considered.

2.
Nutrients ; 16(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38931216

ABSTRACT

Atherosclerosis is one of the most important causes of cardiovascular diseases. A disintegrin and metalloprotease (ADAM)10 and ADAM17 have been identified as important regulators of inflammation in recent years. Our study investigated the effect of inhibiting these enzymes with selective inhibitor and propolis on atherosclerosis. In our study, C57BL/6J mice (n = 16) were used in the control and sham groups. In contrast, ApoE-/- mice (n = 48) were used in the case, water extract of propolis (WEP), ethanolic extract of propolis (EEP), GW280264X (GW-synthetic inhibitor), and solvent (DMSO and ethanol) groups. The control group was fed a control diet, and all other groups were fed a high-cholesterol diet for 16 weeks. WEP (400 mg/kg/day), EEP (200 mg/kg/day), and GW (100 µg/kg/day) were administered intraperitoneally for the last four weeks. Animals were sacrificed, and blood, liver, aortic arch, and aortic root tissues were collected. In serum, total cholesterol (TC), triglycerides (TGs), and glucose (Glu) were measured by enzymatic colorimetric method, while interleukin-1ß (IL-1ß), paraoxonase-1 (PON-1), and lipoprotein-associated phospholipase-A2 (Lp-PLA2) were measured by ELISA. Tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), myeloperoxidase (MPO), interleukin-6 (IL-6), interleukin-10 (IL-10), and interleukin-12 (IL-12) levels were measured in aortic arch by ELISA and ADAM10/17 activities were measured fluorometrically. In addition, aortic root and liver tissues were examined histopathologically and immunohistochemically (ADAM10 and sortilin primary antibody). In the WEP, EEP, and GW groups compared to the case group, TC, TG, TNF-α, IL-1ß, IL-6, IL-12, PLA2, MPO, ADAM10/17 activities, plaque burden, lipid accumulation, ADAM10, and sortilin levels decreased, while IL-10 and PON-1 levels increased (p < 0.003). Our study results show that propolis can effectively reduce atherosclerosis-related inflammation and dyslipidemia through ADAM10/17 inhibition.


Subject(s)
ADAM10 Protein , Amyloid Precursor Protein Secretases , Dyslipidemias , Inflammation , Mice, Inbred C57BL , Propolis , Animals , ADAM10 Protein/metabolism , Propolis/pharmacology , Inflammation/prevention & control , Dyslipidemias/drug therapy , Dyslipidemias/etiology , Mice , Male , Amyloid Precursor Protein Secretases/metabolism , Atherosclerosis/prevention & control , Atherosclerosis/etiology , Cholesterol, Dietary/adverse effects , Diet, High-Fat/adverse effects , Membrane Proteins/metabolism , Disease Models, Animal
3.
Rev Int Androl ; 22(1): 1-7, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38735871

ABSTRACT

It was aimed to evaluate whether gallic acid (GA) have a beneficial effect in the testicular ischemia/reperfusion injury (IRI) model in rats for the first time. Testicular malondialdehyde, 8-hydroxy-2'-deoxyguanosine, superoxide dismutase, catalase, high mobility group box 1 protein, nuclear factor kappa B, tumor necrosis factoralpha, interleukin-6, myeloperoxidase, 78-kDa glucose-regulated protein, activating transcription factor 6, CCAAT-enhancer-binding protein homologous protein and caspase-3 levels were determined using colorimetric methods. The oxidative stress, inflammation, endoplasmic reticulum stress and apoptosis levels increased statistically significantly in the IRI group compared with the sham operated group (p < 0.05). GA application improved these damage significantly (p < 0.05). Moreover, it was found that the results of histological examinations supported the biochemical results to a statistically significant extent. Our findings suggested that GA may be evaluated as a protective agent against testicular IRI.


Subject(s)
Endoplasmic Reticulum Stress , Gallic Acid , HMGB1 Protein , NF-kappa B , Oxidative Stress , Reperfusion Injury , Spermatic Cord Torsion , Testis , Male , Animals , Gallic Acid/pharmacology , Gallic Acid/administration & dosage , Rats , Reperfusion Injury/prevention & control , Reperfusion Injury/metabolism , Reperfusion Injury/drug therapy , NF-kappa B/metabolism , HMGB1 Protein/metabolism , Oxidative Stress/drug effects , Endoplasmic Reticulum Stress/drug effects , Testis/drug effects , Testis/metabolism , Testis/pathology , Apoptosis/drug effects , Rats, Sprague-Dawley
4.
Drug Chem Toxicol ; 47(2): 218-226, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37246941

ABSTRACT

Although cisplatin (CDDP) is an antineoplastic drug widely used for the treatment of various tumors, its toxicity on the reproductive system is a concern for patients. Ethyl pyruvate (EP) possesses potent antioxidant and anti-inflammatory activities. The objective of this study was to evaluate the therapeutic potential of EP on CDDP-mediated ovotoxicity for the first time. Rats were exposed to CDDP (5 mg/kg) and then treated with two doses of EP (20 and 40 mg/kg) for 3 days. Serum fertility hormone markers were evaluated using ELISA kits. Oxidative stress (OS), inflammation, endoplasmic reticulum stress (ERS) and apoptosis markers were also determined. In addition, how CDDP affects the nuclear factor erythroid 2-associated factor 2 (Nrf2) pathway and the effect of EP on this situation were also addressed. EP improved CDDP-induced histopathological findings and restored decreasing levels of fertility hormones. EP treatment also reduced the levels of CDDP-mediated OS, inflammation, ERS and apoptosis. In addition, EP attenuated CDDP-induced suppression in the levels of Nrf2 and its target genes, including heme oxygenase-1, NAD(P)H quinone dehydrogenase-1, superoxide dismutase and glutathione peroxidase. Histological and biochemical results showed that EP can have therapeutic effects against CDDP-induced ovotoxicity with antioxidant, anti-inflammatory and Nrf2 activator activities.


Subject(s)
Antioxidants , Cisplatin , Pyruvates , Humans , Rats , Animals , Cisplatin/toxicity , Antioxidants/pharmacology , Antioxidants/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Anti-Inflammatory Agents/pharmacology , Inflammation , Apoptosis
5.
Drug Chem Toxicol ; 47(2): 213-217, 2024 Mar.
Article in English | MEDLINE | ID: mdl-36718984

ABSTRACT

The aim of this study was to determine the possible therapeutic effect of chlorogenic acid (CGA) on cisplatin (CDDP)-induced ovarian damage in rats. Rats were first exposed to CDDP (5 mg/kg) and then treated CGA (1.5 and 3 mg/kg) for three days. Oxidative stress (OS), inflammation and apoptosis markers were determined using spectrophotometric methods. Ovarian tissues were also evaluated histologically. The levels of OS, inflammation and apoptosis biomarkers increased by CDDP administration (p < 0.05). Treatments with CGA significantly alleviated these markers dose-dependently (p < 0.05). These data reveal that CGA may exert an ovoprotective effect by reducing pro-inflammatory mediators and enhancing antioxidant status in ovarian tissue.


Subject(s)
Chlorogenic Acid , Cisplatin , Rats , Animals , Chlorogenic Acid/pharmacology , Chlorogenic Acid/therapeutic use , Cisplatin/toxicity , Antioxidants/pharmacology , Oxidative Stress , Inflammation/drug therapy , Apoptosis
6.
Int Urol Nephrol ; 56(2): 527-537, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37789204

ABSTRACT

PURPOSE: Testicular toxicity is one of the most important side effects of cisplatin (CP) therapy. Alpha-pinene (AP) is a naturally occurring monoterpene with antioxidant character in plants. Here, we aimed to evaluate the therapeutic activity of AP against CP-induced testicular toxicity by including the nuclear factor erythroid 2-associated factor 2 (Nrf2) pathway in rats. METHODS: Thirty male rats were divided into 5 groups: control, CP, CP + AP (5 and 10 mg/kg) and only AP (10 mg/kg). CP was administered intraperitoneally at a dose of 5 mg/kg on the first day, followed by three consecutive injections of AP. Serum reproductive hormone levels were evaluated using ELISA kits. Oxidative stress (OS), inflammation, endoplasmic reticulum stress (ERS) and apoptosis markers in testicular tissue were also determined colorimetrically. In addition, how CP affects Nrf2 pathway and the effect of AP on this situation were also addressed. RESULTS: Treatment with CP significantly increased OS, inflammation, ERS and apoptosis in testicular tissue. Administrations of AP resulted in an amelioration of these altered parameters. The mechanism of therapeutic effect of AP appeared to involve induction of Nrf2. Furthermore, these results were also confirmed by histological data. CONCLUSION: Results suggest that AP can exhibit therapeutic effects against CP-induced testicular toxicity. It can be concluded that AP may be a potential molecule to abolish reproductive toxicity after chemotherapy.


Subject(s)
Bicyclic Monoterpenes , Cisplatin , NF-E2-Related Factor 2 , Male , Rats , Animals , Cisplatin/adverse effects , NF-E2-Related Factor 2/metabolism , Testis/pathology , Oxidative Stress , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/metabolism , Inflammation/metabolism , Apoptosis
7.
Reprod Biol ; 23(4): 100824, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37976616

ABSTRACT

Arbutin (ARB) is a glycosylated hydroquinone with potent antioxidant effects. Although cisplatin (CP) is widely used in chemotherapy, its toxicity in healthy tissues, including ovotoxicity, is an insurmountable problem. This study aimed to evaluate the therapeutic effect of ARB against CP-related ovototoxicity by including nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in rats for the first time. Rats treated one dose of CP (5 mg/kg) on the first day, followed by ARB (5 and 10 mg/kg) for three days. Serum reproductive hormone levels were determined using ELISA kits. Oxidative stress (OS), inflammation, endoplasmic reticulum stress (ERS) and apoptosis markers in ovarian tissue were also determined colorimetrically. In addition, how CP affects Nrf2 pathway and the effect of ARB on this situation were also addressed. ARB treatment reduced the levels of markers of OS, inflammation, ERS and apoptosis in ovarian tissue of CP-stimulated animals. ARB regenerated the depleted antioxidant system by triggering Nrf2 pathway in the ovarian tissues of animals stimulated by CP. Histological findings also supported the therapeutic efficacy of ARB. The results indicate that ARB may have therapeutic effects against CP-induced reproductive toxicity with its Nrf2 activator potential. ARB should be tested in more extensive studies as a new generation chemopreventive candidate molecule.


Subject(s)
Cisplatin , NF-E2-Related Factor 2 , Rats , Animals , Cisplatin/toxicity , NF-E2-Related Factor 2/metabolism , Arbutin/pharmacology , Arbutin/therapeutic use , Angiotensin Receptor Antagonists/pharmacology , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Antioxidants/metabolism , Oxidative Stress , Endoplasmic Reticulum Stress , Inflammation/metabolism , Apoptosis
8.
Tissue Cell ; 85: 102256, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37918215

ABSTRACT

Reproductive toxicity is a serious side effect of cisplatin (CP) chemotherapy. Gentisic acid (GTA) is a phenolic acid with strong antioxidant properties. Here, we aimed to determine therapeutic effect of GTA against CP-induced testicular toxicity in rats for the first time. Male Sprague-Dawley rats received a single dose of CP (5 mg/kg; intraperitoneal) and treated with GTA (1.5 and 3 mg/kg; intraperitoneal; 3 consecutive days). The levels of oxidative stress (OS), inflammation, endoplasmic reticulum stress (ERS) and apoptosis biomarkers were assessed in the testicular tissue of rats. In addition, how CP affects the nuclear factor erythroid-2-related factor 2 (Nrf2) pathway and the effect of GTA on this situation were also addressed in the testicular tissue. CP administration induced histopathological changes in testicular tissue of rats with a significant increase in OS, inflammation, ERS and apoptosis biomarkers and a decrease in antioxidant capacity and Nrf2 expression levels. Administrations of GTA resulted in an amelioration of these altered parameters. These data suggest that GTA may be a potential therapeutic agent against CP-induced testicular toxicity. Activation of the Nrf2 pathway plays a key role of this therapeutic effect of GTA.


Subject(s)
Antioxidants , Cisplatin , Rats , Male , Animals , Cisplatin/toxicity , Antioxidants/pharmacology , Antioxidants/metabolism , Rats, Sprague-Dawley , NF-E2-Related Factor 2/metabolism , Apoptosis , Signal Transduction , Testis/metabolism , Oxidative Stress , Endoplasmic Reticulum Stress , Inflammation/pathology , Biomarkers/metabolism
9.
Rev. int. androl. (Internet) ; 21(3): 1-7, jul.-sep. 2023. tab, ilus
Article in English | IBECS | ID: ibc-222353

ABSTRACT

Purpose: This study was performed to evaluate the effect of ethanolic extract of Turkish propolis (EEP) on testicular ischemia/reperfusion (I/R) damage in rats in terms of biochemistry and histopathology, for the first time. Methods: A total of 18 male Sprague-Dawley rats were divided into three groups with six rats in each group: control, torsion/detorsion (T/D), and T/D+EEP (100mg/kg). Testicular torsion was performed by 720° rotating the left testicle in a clockwise direction. The duration of ischemia was 4h and orchiectomy was performed after 2h of detorsion. EEP was applied only once 30min before detorsion. Tissue malondialdehyde (MDA), total oxidant status (TOS) and total antioxidant status (TAS) levels were determined using colorimetric methods. Oxidative stress index (OSI) was calculated by proportioning tissue TOS and TAS values to each other. Tissue glutathione (GSH) and glutathione peroxidase (GPx) levels were determined using enzyme-linked immunosorbent assay (ELISA) kits. Johnsen's testicle scoring system was used for histological evaluation. Results: In the T/D group, it was determined that statistically significant decreasing in TAS, GSH, GPx levels and Johnsen score, and increasing in TOS, OSI and MDA levels (p<0.05) compared with control group. EEP administration statistically significantly restored this I/R damage (p<0.05). Conclusion: This is the first study to show that propolis prevent I/R-induced testicular damage through its antioxidant activity. More comprehensive studies are needed to see the underlying mechanisms. (AU)


Objetivo: Este estudio se realizó para evaluar por primera vez el efecto del extracto etanólico de propóleo turco (EEP) sobre el daño por isquemia/reperfusión (I/R) testicular en ratas en términos de bioquímica e histopatología. Métodos: Un total de 18 ratas macho Sprague-Dawley se dividieron en 3 grupos con 6 ratas en cada grupo: control, torsión/detorsión (T/D) y T/D+EEP (100mg/kg). La torsión testicular se realizó con una rotación de 720° del testículo izquierdo en el sentido de las agujas del reloj. La duración de la isquemia fue de 4h y la orquiectomía se realizó a las 2h de la detorsión. EEP se aplicó solo una vez 30min antes de la detorsión. Los niveles de malondialdehído tisular (MDA), estado oxidante total (TOS) y estado antioxidante total (TAS) se determinaron mediante métodos colorimétricos. El índice de estrés oxidativo (OSI) se calculó proporcionando los valores de TOS y TAS del tejido entre sí. Los niveles de glutatión tisular (GSH) y glutatión peroxidasa (GPx) se determinaron utilizando kits de ensayo inmunoabsorbente ligado a enzimas (ELISA). Se utilizó el sistema de puntuación de testículos de Johnsen para la evaluación histológica. Resultados: En el grupo T/D, se determina una disminución estadísticamente significativa en los niveles de TAS, GSH, GPx y puntuación de Johnsen y un aumento en los niveles de TOS, OSI y MDA (p<0,05) en comparación con el grupo control. La administración de EEP restauró de forma estadísticamente significativa este daño I/R (p<0,05). Conclusión: Este es el primer estudio que demuestra que el propóleo previene el daño testicular inducido por I/R a través de su actividad antioxidante. Se necesitan estudios más completos para ver los mecanismos subyacentes. (AU)


Subject(s)
Animals , Rats , Propolis , Oxidative Stress , Reperfusion Injury , Rats, Sprague-Dawley , Spermatic Cord Torsion
10.
Saudi Pharm J ; 31(9): 101730, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37583754

ABSTRACT

Cisplatin (CDDP) is an important chemotherapeutic agent, accumulation of which in kidney tissue causes nephrotoxicity and renal failure. The aim of this study was to evaluate, for the first time in the literature, the protective effect of dimethyl sulfoxide (DMSO) extract of Primula vulgaris leaf (PVE) against CDDP-induced nephrotoxicity in rats. The PVE content was characterized using liquid chromatography-mass spectrometry. Nephrotoxicity was induced with a single dose of CDDP (7.5 mg/kg). Thirty female Wistar-Albino rats were divided into five groups (control, DMSO, CDDP (7.5 mg/kg), CDDP + PVE (25 mg/kg), and CDDP + PVE (50 mg/kg)). Biochemical and histopathological analyses were then performed. Rutin, gallic acid, p-coumaric acid and protocatechuic acid were identified as major components of PVE. Total antioxidant status and glutathione (GSH) values increased significantly in the serum samples from the treatment group compared to the CDDP group, while blood urea nitrogen, creatinine, oxidative stress index, malondialdehyde (MDA), tumor necrosis factor-alpha (TNF-α), total oxidant status, and 8-hydroxy-2'-deoxyguanosine (8-OHdG) values decreased significantly. GSH levels increased significantly in the treatment group compared to the CDDP group, while TNF-α, caspase-3, 8-OHdG, MDA levels and damage scores decreased significantly. In conclusion, PVE exhibited strong protective effects through its anti-apoptotic, antioxidant, and anti-inflammatory activities against nephrotoxicity and oxidative damage caused by CDDP in rats.

11.
Int Urol Nephrol ; 55(12): 3077-3087, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37566321

ABSTRACT

PURPOSE: Cyclophosphamide (CYP) is an antitumor drug. However, in addition to its antitumor affect, CYP can also lead to nephrotoxicity and hemorrhagic cystitis. The purpose of this study was to investigate the potential protective effects of Pterostilbene (Pte), a natural antioxidant as a resveratrol analog against CYP-induced nephrotoxicity and cystitis in rats. METHODS: Twenty-one male Sprague Dawley rats were divided into 3 equal groups. The control group and the CYP group (CYPG) received 1 ml/kg sunflower oil per day, and the CYP + Pte group (CYP + PteG) 40 mg/kg per day Pte dissolved in sunflower oil once a day via the oral route for 14 days. In addition, on day 9 of the experiment, CYPG and CYP + PteG received a single dose of 200 mg/kg CYP dissolved in saline solution, while the control group received a single dose of 10 ml/kg saline solution, via the intraperitoneal route. Bladder and kidney tissues were collected for histological and biochemical evaluations. RESULTS: Pte was observed to reduce CYP-derived increases in malondialdehyde level, total oxidant status (TOS), the oxidative stress index (OSI), and apoptosis in kidney tissues and to cause an increase in superoxide dismutase levels. It also reduced CYP-derived increases in TOS, OSI, and apoptosis in bladder tissue. Moreover, Pte also ameliorated histopathological findings associated with CYP-induced tissue damage in both the kidney and bladder. CONCLUSION: Our study findings show that Pte may exhibit a protective effect against CYP-induced nephrotoxicity and cystitis.


Subject(s)
Cystitis , Renal Insufficiency , Rats , Male , Animals , Saline Solution/adverse effects , Sunflower Oil/adverse effects , Rats, Sprague-Dawley , Cystitis/chemically induced , Cystitis/prevention & control , Cyclophosphamide/toxicity
12.
Tissue Cell ; 84: 102161, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37478646

ABSTRACT

Although cisplatin (CDDP) is an effective anticancer agent, the ovotoxicity that can occur in female patients limits its use. Oxidative stress (OS) and inflammation are known to contribute to CDDP-induced ovotoxicity. Vanillic acid (VA) is a dietary herbal secondary metabolite with high free radical scavenging activity. It was aimed to evaluate the therapeutic effects of VA against CDDP-induced ovotoxicity in rats in this study for the first time. Ovotoxicity was achieved with a single dose of CDDP (5 mg/kg) in female rats. The therapeutic effect of VA was evaluated with 3-day administration of two different doses (5 and 10 mg/kg). While OS, inflammation, endoplasmic reticulum stress (ERS) and apoptosis markers were measured in tissue samples, the levels of reproductive hormones were determined in serum samples using colorimetric methods. The results showed that CDDP-induced nuclear factor erythroid 2-associated factor 2 (Nrf2) inhibition combined with increased OS, inflammation, ERS and apoptosis increased ovarian damage. VA treatments reversed these changes via activating Nrf2 pathway dose-dependently. In addition, histopathological findings also supported the biochemical results. VA may be a good therapeutic molecule candidate for CDDP-induced ovarian damage due to strong antioxidant and Nrf2 activator properties.


Subject(s)
Antineoplastic Agents , Cisplatin , Female , Rats , Animals , Cisplatin/toxicity , NF-E2-Related Factor 2/metabolism , Vanillic Acid/pharmacology , Antineoplastic Agents/toxicity , Oxidative Stress , Inflammation/chemically induced , Apoptosis
13.
J Biochem Mol Toxicol ; 37(9): e23408, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37335224

ABSTRACT

5-Fluorouracil (5-FU) is a fluoropyrimidine group antineoplastic drug with antimetabolite properties and ovotoxicity is one of the most important side effects. Silibinin (SLB) is a natural compound that is used worldwide and stands out with its antioxidant and anti-inflammatory properties. The aim of this study was to evaluate the therapeutic effect of SLB in 5-FU-induced ovototoxicity using biochemical and histological analysis. This study was carried out in five main groups containing six rats in each group: control, SLB (5 mg/kg), 5-FU (100 mg/kg), 5-FU + SLB (2.5 mg/kg), and 5-FU + SLB (5 mg/kg). The levels of ovarian malondialdehyde (MDA), total oxidant status (TOS), total antioxidant status (TAS), superoxide dismutase (SOD), catalase (CAT), 8-hydroxy-2'-deoxyguanosine (8-OHdG), tumor necrosis factor-alpha (TNF-α), myeloperoxidase (MPO), and caspase-3 were determined using spectrophotometric methods. Hematoxylin and eosin staining method was employed for histopathological examination. MDA, TOS, 8-OHdG, TNF-α, MPO, and caspase-3 levels in 5-FU group were significantly increased compared with the control group, while the levels of TAS, SOD, and CAT were decreased (p < 0.05). SLB treatments statistically significantly restored this damage in a dose-dependent manner (p < 0.05). Although vascular congestion, edema, hemorrhage, follicular degeneration, and leukocyte infiltration were significantly higher in the 5-FU group compared with the control group, SLB treatments also statistically significantly restored these damages (p < 0.05). In conclusion, SLB has a therapeutic effect on the ovarian damage induced by 5-FU via decreasing the levels of oxidative stress, inflammation, and apoptosis. It may be helpful to consider the usefulness of SLB as an adjuvant therapy to counteract the side effects of chemotherapy.


Subject(s)
Antioxidants , Tumor Necrosis Factor-alpha , Rats , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Silybin/pharmacology , Caspase 3 , Oxidative Stress , Oxidants/pharmacology , Fluorouracil/toxicity , Superoxide Dismutase/metabolism
14.
Rev Int Androl ; 21(3): 100364, 2023.
Article in English | MEDLINE | ID: mdl-37267854

ABSTRACT

PURPOSE: This study was performed to evaluate the effect of ethanolic extract of Turkish propolis (EEP) on testicular ischemia/reperfusion (I/R) damage in rats in terms of biochemistry and histopathology, for the first time. METHODS: A total of 18 male Sprague-Dawley rats were divided into three groups with six rats in each group: control, torsion/detorsion (T/D), and T/D+EEP (100mg/kg). Testicular torsion was performed by 720° rotating the left testicle in a clockwise direction. The duration of ischemia was 4h and orchiectomy was performed after 2h of detorsion. EEP was applied only once 30min before detorsion. Tissue malondialdehyde (MDA), total oxidant status (TOS) and total antioxidant status (TAS) levels were determined using colorimetric methods. Oxidative stress index (OSI) was calculated by proportioning tissue TOS and TAS values to each other. Tissue glutathione (GSH) and glutathione peroxidase (GPx) levels were determined using enzyme-linked immunosorbent assay (ELISA) kits. Johnsen's testicle scoring system was used for histological evaluation. RESULTS: In the T/D group, it was determined that statistically significant decreasing in TAS, GSH, GPx levels and Johnsen score, and increasing in TOS, OSI and MDA levels (p<0.05) compared with control group. EEP administration statistically significantly restored this I/R damage (p<0.05). CONCLUSION: This is the first study to show that propolis prevent I/R-induced testicular damage through its antioxidant activity. More comprehensive studies are needed to see the underlying mechanisms.


Subject(s)
Propolis , Reperfusion Injury , Rats , Male , Animals , Testis , Propolis/pharmacology , Propolis/metabolism , Rats, Sprague-Dawley , Reperfusion Injury/prevention & control , Oxidative Stress , Antioxidants/pharmacology , Ischemia , Glutathione/metabolism , Glutathione Peroxidase/metabolism , Reperfusion
15.
Tissue Cell ; 82: 102056, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36921493

ABSTRACT

The aim of this study was to investigate the effects of arbutin (ARB) administration on oxidative stress, inflammation, endoplasmic reticulum (ER) stress and apoptosis in an experimental testicular torsion/detorsion (T/D)-induced testicular injury model for the first time. A total of 24 male Sprague-Dawley rats were divided into four groups with six rats in each group: sham control, T/D, T/D+ARB (50 mg/kg) and T/D+ARB (100 mg/kg). Torsion and detorsion times were applied as 4 h and 2 h, respectively. The levels of lipid peroxidation [malondialdehyde (MDA)] and oxidative stress [total oxidant status (TOS) and total antioxidant status (TAS)] in testicular tissues were determined using colorimetric methods. The levels of DNA damage [8-hydroxy-2'-deoxyguanosine (8-OHdG)], antioxidant system [superoxide dismutase (SOD) and catalase (CAT)], pro-inflammatory cytokines [high mobility group box 1 (HMGB1), nuclear factor kappa B protein 65 (NF-κB p65), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and myeloperoxidase (MPO)], ER stress [78-kDa glucose-regulated protein (GRP78), activating transcription factor 6 (ATF6) and CCAAT-enhancer-binding protein homologous protein (CHOP)] and apoptosis (caspase-3) markers in testicular tissues were determined using commercial enzyme-linked immunosorbent assay (ELISA) kits. Johnsen's testicle scoring system was used for histological evaluation. In the T/D group, it was determined that statistically significant increasing in the levels of oxidative stress, inflammation, ER stress and apoptosis compared with sham control group (p < 0.05). ARB administrations statistically significantly restored testicular I/R damage in a dose dependent manner (p < 0.05). In addition, it was determined that the data of histological examinations supported the biochemical results. Our findings support the hypothesis that ARB may be used as a protective agent against T/D-induced testicular damage.


Subject(s)
Reperfusion Injury , Spermatic Cord Torsion , Rats , Male , Animals , Humans , Testis/metabolism , Antioxidants/metabolism , Rats, Sprague-Dawley , Arbutin/metabolism , Arbutin/pharmacology , Angiotensin Receptor Antagonists/metabolism , Angiotensin Receptor Antagonists/pharmacology , Angiotensin-Converting Enzyme Inhibitors/metabolism , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Spermatic Cord Torsion/drug therapy , Spermatic Cord Torsion/metabolism , Spermatic Cord Torsion/pathology , Reperfusion Injury/metabolism , Oxidative Stress , Inflammation/pathology , Ischemia , Malondialdehyde/metabolism
16.
Eur J Trauma Emerg Surg ; 49(3): 1595-1602, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36692504

ABSTRACT

PURPOSE: To investigate the possible protective role of syringic acid on torsion/detorsion-induced testicular injury using biochemical and histopathological approaches for the first time. METHODS: A total of 24 rats were divided into 4 groups: sham control, torsion/detorsion, torsion/detorsion + syringic acid (50 mg/kg and 100 mg/kg). Tissue malondialdehyde, total oxidant status and total antioxidant status levels were determined using colorimetric methods. Tissue 8-hydroxy-2'-deoxyguanosine, superoxide dismutase, catalase, high mobility group box 1, nuclear factor kappa B protein 65, tumor necrosis factor-alpha, interleukin-6, myeloperoxidase, 78-kDa glucose-regulated protein, activating transcription factor-6, C/EBP homologous protein and caspase-3 levels were determined using commercial enzyme-linked immunosorbent assay kits. Johnsen's testicle scoring system was used for histological evaluation. RESULTS: Compared with the control group, the levels of oxidative stress, inflammation, endoplasmic reticulum stress and apoptosis were significantly increased in the torsion/detorsion group (p < 0.05). Syringic acid administrations statistically significantly restored these damage in a dose dependent manner (p < 0.05). Moreover, it was found that the results of histological examinations supported the biochemical results to a statistically significant extent. CONCLUSION: The overall results suggest that syringic acid emerges as a potential compound for the treatment of testicular torsion and may be subject to clinical trials.


Subject(s)
HMGB1 Protein , Testis , Male , Rats , Animals , Testis/metabolism , Testis/pathology , NF-kappa B/metabolism , HMGB1 Protein/metabolism , Endoplasmic Reticulum Stress , Reperfusion , Ischemia
17.
Drug Chem Toxicol ; 46(1): 97-103, 2023 Jan.
Article in English | MEDLINE | ID: mdl-34886721

ABSTRACT

The aim of the present study was to evaluate the protective effect of gallic acid (GA) against cisplatin (CDDP)-induced ovarian toxicity, for the first time. The ovarian damage was generated with CDDP (5 mg/kg) intraperitoneally (i.p.) administration in rats. GA (2.5 and 5 mg/kg) were administered i.p. for 3 consecutive days. The study was carried out in 5 main groups containing 6 rats in each group: control, GA (5 mg/kg), CDDP, CDDP + GA (2.5 mg/kg) and CDDP + GA (5 mg/kg). The levels of ovarian malondialdehyde (MDA), total oxidant status (TOS), total antioxidant status (TAS), oxidative stress index (OSI), catalase (CAT), 8-hydroxy-2'-deoxyguanosine (8-OHdG), caspase-3 and tumor necrosis factor-alpha (TNF-α) were determined. Hematoxylin and eosin staining method was employed for the histopathological examination. In the CDDP group, it is determined that statistically significant decreasing in the levels of TAS and CAT, and increasing in the levels of MDA, TOS, OSI, 8-OHdG, caspase-3 and TNF-α (p < 0.05) compared with control group. GA administrations statistically significantly restored this damage (p < 0.05). Although vascular congestion, edema, hemorrhage, follicular degeneration and leukocyte infiltration were significantly higher in the CDDP group than in the control group, GA administrations statistically significantly restored these damages (p < 0.05). In conclusion, this study showed that GA prevented CDDP-induced ovarian damage with its antioxidant, anti-apoptotic and anti-inflammatory activities. More comprehensive studies are needed to see the underlying mechanisms.


Subject(s)
Antioxidants , Cisplatin , Rats , Animals , Cisplatin/toxicity , Antioxidants/pharmacology , Antioxidants/metabolism , Gallic Acid/pharmacology , Caspase 3 , Tumor Necrosis Factor-alpha , Oxidative Stress
18.
J Obstet Gynaecol ; 42(8): 3584-3590, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36193760

ABSTRACT

The aim of this study was to investigate the potential therapeutic efficacy of chrysin (CHS) against ovotoxicity caused by intraperitoneal administration of cisplatin (CDDP) in rats. In this experimental study, 24 female rats were randomly divided into four groups: control, CHS (2 mg/kg), CDDP (5 mg/kg) and CDDP (5 mg/kg) + CHS (2 mg/kg). The levels of malondialdehyde (MDA), total oxidant status (TOS), total antioxidant status (TAS), superoxide dismutase (SOD), interleukin-6 (IL-6) and myeloperoxidase (MPO) were determined in the ovarian tissues using spectrophotometric methods. In addition, the ovarian samples were evaluated histopathologically by hematoxylin&eosin staining. The results revealed that the levels of MDA, TOS, IL-6 and MPO significantly increased by CDDP administration compared with control group (p < 0.05). Also, it was found that CDDP significantly decreased TAS and SOD levels (p < 0.05). CHS ameliorated CDDP-induced the increased levels of MDA, TOS, IL-6, MPO and increased the levels of TAS and SOD significantly (p < 0.05). Histological findings also supported the therapeutic effect of CHS against CDDP-induced ovarian damage parameters. In conclusion, our results showed that CHS exhibits a therapeutic effect against CDDP-induced ovotoxicity and therefore the use of CHS after chemotherapy may improve the side effets of CDDP. IMPACT STATEMENTWhat is already known about this subject? Cisplatin (CDDP) is an effective and widely used chemotherapeutic agent to treat various malignancies, but its therapeutic use is limited due to dose-related tissue toxicity. Chrysin (CHS), a natural flavone, exhibits various beneficial activities, including antioxidant, anti-inflammatory and anticancer. There are increasing evidences in the literature that CHS reduces the toxicity of various chemotherapeutic agents, such as CDDP, doxorubicin and cyclophosphamide, in colon, kidney and liver tissues through its antioxidant and anti-inflammatory potential.What do the results of this study add? This study demonstrated that CHS can abolish CDDP-induced in vivo ovarian injury by decreasing MDA, TOS, IL-6 and MPO levels and increasing SOD and TAS levels through its antioxidant and anti-inflammatory potential.What are the implications of these findings for clinical practice and/or further research? This study revealed the therapeutic potential of CHS against CDDP-induced acute ovotoxicity, for the first time. Further pre-clinical studies are necessary to prove the beneficial effect of CHS on the prevention of CDDP-induced ovarian toxicity.


Subject(s)
Antioxidants , Cisplatin , Flavonoids , Animals , Female , Rats , Antioxidants/pharmacology , Cisplatin/administration & dosage , Cisplatin/adverse effects , Interleukin-6 , Oxidants , Oxidative Stress , Rats, Wistar , Superoxide Dismutase/metabolism , Superoxide Dismutase/pharmacology , Flavonoids/pharmacology
19.
J Pediatr Urol ; 18(3): 289.e1-289.e7, 2022 06.
Article in English | MEDLINE | ID: mdl-35279357

ABSTRACT

BACKROUND: Testicular torsion (TT) is an urological emergency situation especially in adolescents and young men. The main pathophysiology of testicular torsion/detorsion (T/D) is ischemia-reperfusion (I/R) injury. I/R induces the production of reactive oxygen species (ROS) thought to play a critical role in tissue injury. Increasing evidence suggests that ER stress may play an important role in I/R-induced cell death. During ischemia, oxygen and glucose deprivation also causes abnormalities in protein folding processes. Antioxidants suppress oxidative stress directly as well as ER stress and thus gain importance in the treatment of pathologies associated with oxidative stress and ER stress, such as I/R damage. Chlorogenic acid (CGA) which is formed by the esterification of caffeic and quinic acids and is one of the most abundant phenolic acids in nature. There is also a growing body of studies reporting protective effects of CGA against I/R injury in different tissues, including intestinal, heart and brain. OBJECTIVE: To investigate the effects of CGA on oxidative stress and ER stress in an experimental testicular I/R injury model. DESIGN: Rats were divided into three groups: control, T/D, and T/D + CGA. In the T/D + CGA group, 100 mg/kg CGA was given intraperitoneally 30 min before detorsion. While tissue malondialdehyde (MDA) levels were determined manually using a colorimetric method, tissue superoxide dismutase (SOD), 78-kDa glucose regulatory protein (GRP78), activating transcription factor 6 (ATF6) and C/EBP homologous protein (CHOP) levels were determined enzyme-linked immunosorbent assay (ELISA) kits. Johnsen's testicle scoring system was used for histological evaluation. RESULTS: In T/D group, tissue MDA, GRP78, ATF6 and CHOP levels were significantly higher than control group (p < 0.05). These increases were significantly reversed with CGA pre-treatment (p < 0.05). The histopathological Johnsen score was significantly lower in the T/D group compared to the control group, but the level of histopathological Johnsen score was significantly restored by CGA pre-treatment (p < 0.05). DISCUSSION: The relationship between I/R injury and ER stress has been emphasized frequently in recent years. This study in which the effects of CGA on TT were examined for the first time, showed that CGA can inhibit I/R-induced testicular damage. CONCLUSION: These results may provide a new insight into CGA and may form the first clinical theoretical basis for the possible use of CGA in the treatment of TT in the future. However, the real function of CGA in TT patients needs further investigation.


Subject(s)
Reperfusion Injury , Spermatic Cord Torsion , Adolescent , Animals , Chlorogenic Acid/metabolism , Chlorogenic Acid/pharmacology , Chlorogenic Acid/therapeutic use , Endoplasmic Reticulum Stress , Glucose/metabolism , Glucose/pharmacology , Glucose/therapeutic use , Humans , Ischemia/complications , Male , Malondialdehyde/metabolism , Oxidative Stress , Rats , Reperfusion Injury/etiology , Spermatic Cord Torsion/complications , Spermatic Cord Torsion/drug therapy , Spermatic Cord Torsion/metabolism , Testis/pathology
20.
Nutr Cancer ; 74(5): 1882-1893, 2022.
Article in English | MEDLINE | ID: mdl-34323135

ABSTRACT

The aim of the present study was to investigate the role of Rhododendron luteum extract (RLE) in the induction of Nrf2­related oxidative stress and endoplasmic reticulum (ER) stress in human cervical cancer (HeLa) cells. The antiproliferative effect of RLE on HeLa and fibroblast cells was determined using the MTT assay. The effects of RLE on the cell cycle, apoptosis, and production of reactive oxygen species (ROS) in HeLa cells were evaluated using fluorescent probes. The mRNA expression levels of Nrf2 [and its targets glutamate-cysteine ligase catalytic subunit (GCLC), and glucose-6-phosphate dehydrogenase (G6PD)], and C/EBP homologous protein (CHOP, an ER stress marker were determined using reverse transcription­quantitative polymerase chain reaction (RT-PCR). The results demonstrated that RLE exhibited a selective cytotoxic effect (2.9-fold) on HeLa cells compared to fibroblast cells. RLE arrested the cell cycle at the S phase, and induced apoptosis, ER stress, and ROS formation. In addition, RLE significantly suppressed the expression levels of Nrf2, GCLC and G6PD (0.65, 0.69, and 0.54-fold, respectively) and increased the expression of CHOP (4.48-fold) in HeLa cells at 72 h of treatment (p < 0.05). These results show that the antiproliferative effect of RLE occurs through the Nrf2 and ER stress pathways, and the results should now be supported by further in vivo studies.


Subject(s)
Rhododendron , Uterine Cervical Neoplasms , Apoptosis , Female , HeLa Cells , Humans , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Plant Extracts/pharmacology , Reactive Oxygen Species/metabolism , Rhododendron/metabolism , Signal Transduction , Uterine Cervical Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...