Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Psychol Sci ; 23(11): 1410-6, 2012.
Article in English | MEDLINE | ID: mdl-23070307

ABSTRACT

Some individuals have very specific and differentiated emotional experiences, such as anger, shame, excitement, and happiness, whereas others have more general affective experiences of pleasure or discomfort that are not as highly differentiated. Considering that individuals with major depressive disorder (MDD) have cognitive deficits for negative information, we predicted that people with MDD would have less differentiated negative emotional experiences than would healthy people. To test this hypothesis, we assessed participants' emotional experiences using a 7-day experience-sampling protocol. Depression was assessed using structured clinical interviews and the Beck Depression Inventory-II. As predicted, individuals with MDD had less differentiated emotional experiences than did healthy participants, but only for negative emotions. These differences were above and beyond the effects of emotional intensity and variability.


Subject(s)
Cognition , Depressive Disorder, Major/psychology , Emotions , Adolescent , Adult , Case-Control Studies , Female , Humans , Individuality , Male , Young Adult
2.
J Comput Chem ; 24(5): 647-56, 2003 Apr 15.
Article in English | MEDLINE | ID: mdl-12632480

ABSTRACT

High-dimensional model representation (HDMR) is a general set of quantitative model assessment and analysis tools for improving the efficiency of deducing high dimensional input-output system behavior. RS-HDMR is a particular form of HDMR based on random sampling (RS) of the input variables. The component functions in an HDMR expansion are optimal choices tailored to the n-variate function f(x) being represented over the desired domain of the n-dimensional vector x. The high-order terms (usually larger than second order, or equivalently beyond cooperativity between pairs of variables) in the expansion are often negligible. When it is necessary to go beyond the first and the second order RS-HDMR, this article introduces a modified low-order term product (lp)-RS-HDMR method to approximately represent the high-order RS-HDMR component functions as products of low-order functions. Using this method the high-order truncated RS-HDMR expansions may be constructed without directly computing the original high-order terms. The mathematical foundations of lp-RS-HDMR are presented along with an illustration of its utility in an atmospheric chemical kinetics model.

SELECTION OF CITATIONS
SEARCH DETAIL
...