Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 82(10): 1489-95, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21272912

ABSTRACT

Chromium (III) binding by exopolymeric substances (EPS) isolated from Pseudomonas putida P18, Pseudomonas aeruginosa P16 and Pseudomonas stutzeri P40 strains were investigated by the determination of conditional stability constants and the concentration of functional groups using the ion-exchange experiments and potentiometric titrations. Spectroscopic (EXAFS) analysis was also used to obtain information on the nature of Cr(III) binding with EPS functional groups. The data from ion-exchange experiments and potentiometric titrations were evaluated using a non-electrostatic discrete ligand approach. The modeling results show that the acid/base properties of EPSs can be best characterized by invoking four different types of acid functional groups with arbitrarily assigned pK(a) values of 4, 6, 8 and 10. The analysis of ion-exchange data using the discrete ligand approach suggests that while the Cr binding by EPS from P. aeruginosa can be successfully described based on a reaction stoichiometry of 1:2 between Cr(III) and HL(2) monoprotic ligands, the accurate description of Cr binding by EPSs extracted from P. putida and P. stutzeri requires postulation of 1:1 Cr(III)-ligand complexes with HL(2) and HL(3) monoprotic ligands, respectively. These results indicate that the carboxyl and/or phosphoric acid sites contribute to Cr(III) binding by microbial EPS, as also confirmed by EXAFS analysis performed in the current study. Overall, this study highlights the need for incorporation of Cr-EPS interactions into transport and speciation models to more accurately assess microbial Cr(VI) reduction and chromium transport in subsurface systems, including microbial reactive treatment barriers.


Subject(s)
Chromium/metabolism , Polysaccharides, Bacterial/metabolism , Soil Pollutants/metabolism , Adsorption , Chromium/chemistry , Hydrogen-Ion Concentration , Kinetics , Models, Biological , Models, Chemical , Polysaccharides, Bacterial/chemistry , Soil/chemistry , Soil Pollutants/chemistry , X-Ray Absorption Spectroscopy
2.
Chemosphere ; 82(10): 1496-505, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21094978

ABSTRACT

Laboratory batch sorption and column experiments were performed to investigate the effects of microbial EPSs isolated from Pseudomonas putida P18, Pseudomonas aeruginosa P16 and Pseudomonas stutzeri P40 on Cr(III) mobility in heterogeneous subsurface soils. Our batch and column results indicate that microbial EPS may have a pronounced effect on Cr(III) sorption and transport behavior depending on system conditions (e.g., pH, type of EPS). While EPS had no effect on Cr(III) sorption at pH<5, it led to a significant decrease in Cr(III) sorption under slightly acidic to alkaline pH range. Column experiments performed at pH 7.9 suggest that, in the presence of EPS, chromium(III) was significantly mobilized relative to non-EPS containing system due to the formation less sorbing and highly soluble Cr-EPS complexes and competition of EPS against Cr for surface sites. A two-site non-electrostatic surface chemical model incorporating a discrete ligand approach for the description of Cr-EPS interactions accurately predicted Cr(III) sorption and transport behavior in the presence of EPS under variable chemical conditions. Our simulations show that an accurate description of Cr(III) transport in the presence of EPS requires incorporation of proton and Cr(III) binding by EPS, EPS binding by soil minerals, Cr(III) binding by soil minerals, and ternary Cr(III)-EPS surface complexes into the transport equations. Although this approach may not accurately describe the actual mechanisms at the molecular level, it can improve our ability to accurately describe the effects of EPS on Cr(III) mobility in subsurface environment relative to the use of distribution coefficients (K(d)).


Subject(s)
Chromium/metabolism , Polysaccharides, Bacterial/metabolism , Soil Pollutants/metabolism , Adsorption , Chromium/chemistry , Hydrogen-Ion Concentration , Kinetics , Models, Biological , Models, Chemical , Polysaccharides, Bacterial/chemistry , Soil/chemistry , Soil Pollutants/chemistry , X-Ray Absorption Spectroscopy
3.
J Hazard Mater ; 159(2-3): 287-93, 2008 Nov 30.
Article in English | MEDLINE | ID: mdl-18387738

ABSTRACT

Laboratory batch sorption and column experiments were performed to investigate the role of organic ligands such as galacturonic, glucuronic and alginic acids (main constituents of bacterial exopolymeric substances (EPS)) on Cr(VI) uptake and transport in heterogeneous subsurface media. Our batch sorption experiments demonstrate the addition of galacturonic, glucuronic and alginic acids to soils enhances Cr(VI) uptake by soil at pH values <7.7 depending on the concentration of the ligand and pH used. The enhanced Cr(VI) uptake at pH values <7.7 may be explained through either the catalytic reduction of Cr(VI) to Cr(III) by the surface-bound organic matter/Fe oxides and/or the dissolved metal ions (e.g., Fe(III)) from the soil. On the other hand, organic ligands have no or little effect on Cr(VI) uptake under highly alkaline pH conditions since the catalytic Cr(VI) reduction decreases with increasing pH. Similarly, the results from column experiments show that, depending on the concentration of organic ligands, the Cr(VI) breakthrough curves were significantly retarded relative to the organic acid-free systems at pH 7.6. A significant portion of Cr(VI) initially added to the feed solution was not readily recoverable in the effluent, indicating Cr(VI) reduction in columns, most probably catalyzed by surface-bound metal-oxides (e.g., Fe oxides) or dissolved metal ions such as Fe(II; III). The overall results suggest that EPS constituents such as glucuronic, galacturonic and alginic acids may play a significant role on Cr(VI) stabilization in subsurface systems under acidic to slightly alkaline pH conditions.


Subject(s)
Alginates/chemistry , Chromium Compounds/chemistry , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Soil Pollutants/chemistry , Soil/analysis , Adsorption , Catalysis , Environmental Restoration and Remediation , Hydrogen-Ion Concentration , Indicators and Reagents , Ligands , Organic Chemicals , Solutions
SELECTION OF CITATIONS
SEARCH DETAIL
...