Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Histochem Cell Biol ; 136(4): 455-73, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21879347

ABSTRACT

Dental pulp stem cells (hDP-SCs) were primarily derived from pulp tissues of primary incisors, exfoliated deciduous and permanent third molar teeth. To understand the characteristics of hDP-SCs from impacted third molar, proliferation capacities, gene expression profiles, phenotypic, ultrastructural, and differentiation characteristics were analyzed in comparison with human bone marrow-derived mesenchymal stem cells (hBM-MSCs), extensively. hDP-SCs showed more developed and metabolically active cells. Contrary to hBM-MSCs, hDP-SCs strongly expressed both cytokeratin (CK)-18 and -19, which could involve in odontoblast differentiation and dentine repair. The intrinsic neuro-glia characteristics of hDP-MSCs were demonstrated by the expression of several specific transcripts and proteins of neural stem cell and neurons. These cells not only differentiate into adipogenic, osteogenic, and chondrogenic lineage, but also share some special characteristics of expressing some neural stem cell and epithelial markers. Under defined conditions, hDP-SCs are able to differentiate into both neural and vascular endothelial cells in vitro. Dental pulp might provide an alternative source for human MSCs. hDP-SCs with a promising differentiation capacity could be easily isolated, and possible clinical use could be developed for neurodegenerative and oral diseases in the future.


Subject(s)
Bone Marrow Cells/cytology , Dental Pulp/cytology , Epithelial Cells/cytology , Neurons/cytology , Stem Cells/cytology , Adolescent , Adult , Cell Differentiation , Cells, Cultured , Humans , Young Adult
2.
Cytotherapy ; 13(10): 1205-20, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21905956

ABSTRACT

BACKGROUND AIMS. Studies performed using human and animal models have indicated the immunoregulatory capability of mesenchymal stromal cells in several lineages. We investigated whether human dental pulp-derived stem cells (hDP-SC) have regulatory effects on phytohemagglutinin (PHA)-activated CD3(+) T cells. We aimed to define the regulatory mechanisms associated with hDP-SC that occur in mixed lymphocyte reaction (MLR) and transwell systems with PHA-CD3(+) T cells and hDP-SC at a ratio of 1:1. METHODS. Proliferation, apoptosis and pro- and anti-inflammatory cytokines of PHA-CD3(+)T cells, the expression of Regulatory T cells (Treg) markers and some regulatory factors related to hDP-SC, were studied in Both transwell and MLR are co-cultures systems. RESULTS. Anti-proliferative and apoptotic effects of hDP-SC were determined in co-culture systems. Elevated expression levels of human leukocyte antigen (HLA)-G, hepatocyte growth factor (HGF)-ß1, intracellular adhesion molecule (ICAM-1)-1, interleukin (IL)-6, IL-10, transforming growth factor (TGF)-ß1, vascular adhesion molecule (VCAM)-1 and vascular endothelial growth factor (VEGF) by hDP-SC were detected in the co-culture systems. We observed decreased expression levels of pro-inflammatory cytokines [interferon (IFN)-γ, IL-2, IL-6 receptor (R), IL-12, Interleukin-17A (IL-17A), tumor necrosis factor (TNF)-α] and increased expression levels of anti-inflammatory cytokine [inducible protein (IP)-10] from PHA-CD3(+) T cells in the transwell system. Expression of Treg (CD4(+) CD25(+) Foxp3(+)) markers was significantly induced by hDP-SC in both co-culture systems. We observed apoptosis of PHA-CD3(+) T cells with 24 h using time-lapse camera photographs and active caspase labeling; it is likely that paracrine soluble factors and molecular signals secreted by hDP-SC led this apoptosis. CONCLUSIONS. We suggest that hDP-SC have potent immunoregulatory functions because of their soluble factors and cytokines via paracrine mechanisms associated with PHA-CD3(+) T cells, which could contribute to clinical therapies.


Subject(s)
Adult Stem Cells/metabolism , Dental Pulp/cytology , Mesenchymal Stem Cells/metabolism , T-Lymphocyte Subsets/metabolism , T-Lymphocytes, Regulatory/metabolism , Adult , Adult Stem Cells/cytology , Adult Stem Cells/immunology , Antigens, Differentiation/metabolism , Apoptosis , Cell Proliferation , Cells, Cultured , Coculture Techniques , Cytokines/metabolism , Humans , Immunomodulation , Lymphocyte Culture Test, Mixed , Male , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/immunology , Paracrine Communication , Stem Cell Niche , T-Lymphocyte Subsets/cytology , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/immunology
3.
Histochem Cell Biol ; 133(1): 95-112, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19816704

ABSTRACT

Dental pulp stem cells were primarily derived from the pulp tissues of exfoliated deciduous teeth, primary incisors and permanent third molar teeth. The aim of this study was to isolate and extensively characterise SCs derived from human natal dental pulp (hNDP). For characterisation, proliferation capacity, phenotypic properties, ultrastructural and differentiation characteristics and gene expression profiles were utilised. A comparison was done between the properties of NDP-SCs and the properties of mesenchymal stem cells (MSCs) from bone marrow (BM) of the human. Stem cells isolated from hNDP and hBM were analysed by flow cytometry, reverse transcriptase-PCR, Real Time-PCR, and immunocytochemistry. Both cell lines were directionally differentiated towards adipogenic, osteogenic chondrogenic, myogenic and neurogenic lineages. hNDP-SCs and hBM-MSCs expressed CD13, CD44, CD90, CD146 and CD166, but not CD3, CD8, CD11b, CD14, CD15, CD19, CD33, CD34, CD45, CD117, and HLA-DR. Ultrastructural characteristics of hNDP-SCs showed more developed and metabolically active cells. hNDP-SCs and hBM-MSCs expressed some adipogenic (leptin, adipophilin and PPARgamma), myogenic (desmin, myogenin, myosinIIa, and alpha-SMA), neurogenic (gamma-enolase, MAP2a,b, c-fos, nestin, NF-H, NF-L, GFAP and betaIII tubulin), osteogenic (osteonectin, osteocalcin, osteopontin, Runx-2, and type I collagen) and chondrogenic (type II collagen, SOX9) markers without any stimulation towards differentiation under basal conditions. Embryonic stem cell markers Oct4, Rex-1, FoxD-3, Sox2, and Nanog were also identified. The differentiation potential of hNDP-SCs and hBM-MSCs to adipogenic, osteogenic, chondrogenic, myogenic and neurogenic was shown. This report described the first successful isolation and characterisation of hNDP-SCs.


Subject(s)
Dental Pulp/cytology , Natal Teeth/cytology , Stem Cells/cytology , Cell Differentiation , Cell Proliferation , Cell Survival , Cells, Cultured , Dental Pulp/ultrastructure , Flow Cytometry , Humans , Immunohistochemistry , Microscopy, Electron , Natal Teeth/ultrastructure , Reverse Transcriptase Polymerase Chain Reaction , Stem Cells/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...