Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Cytotherapy ; 26(6): 641-648, 2024 06.
Article in English | MEDLINE | ID: mdl-38506770

ABSTRACT

Ex vivo resting culture is a standard procedure following genome editing in hematopoietic stem and progenitor cells (HSPCs). However, prolonged culture may critically affect cell viability and stem cell function. We investigated whether varying durations of culture resting times impact the engraftment efficiency of human CD34+ HSPCs edited at the BCL11A enhancer, a key regulator in the expression of fetal hemoglobin. We employed electroporation to introduce CRISPR-Cas9 components for BCL11A enhancer editing and compared outcomes with nonelectroporated (NEP) and electroporated-only (EP) control groups. Post-electroporation, we monitored cell viability, death rates, and the frequency of enriched hematopoietic stem cell (HSC) fractions (CD34+CD90+CD45RA- cells) over a 48-hour period. Our findings reveal that while the NEP group showed an increase in cell numbers 24 hours post-electroporation, both EP and BCL11A-edited groups experienced significant cell loss. Although CD34+ cell frequency remained high in all groups for up to 48 hours post-electroporation, the frequency of the HSC-enriched fraction was significantly lower in the EP and edited groups compared to the NEP group. In NBSGW xenograft mouse models, both conditioned with busulfan and nonconditioned, we found that immediate transplantation post-electroporation led to enhanced engraftment without compromising editing efficiency. Human glycophorin A+ (GPA+) red blood cells (RBCs) sorted from bone marrow of all BCL11A edited mice exhibited similar levels of γ-globin expression, regardless of infusion time. Our findings underscore the critical importance of optimizing the culture duration between genome editing and transplantation. Minimizing this interval may significantly enhance engraftment success and minimize cell loss without compromising editing efficiency. These insights offer a pathway to improve the success rates of genome editing in HSPCs, particularly for conditions like sickle cell disease.


Subject(s)
Gene Editing , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells , Animals , Humans , Gene Editing/methods , Mice , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cell Transplantation/methods , CRISPR-Cas Systems/genetics , Electroporation/methods , Heterografts , Cell Survival , Antigens, CD34/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism
2.
Blood Adv ; 8(7): 1806-1816, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38181784

ABSTRACT

ABSTRACT: Stable, mixed-donor-recipient chimerism after allogeneic hematopoietic stem cell transplantation (HSCT) for patients with sickle cell disease (SCD) is sufficient for phenotypic disease reversal, and results from differences in donor/recipient-red blood cell (RBC) survival. Understanding variability and predictors of RBC survival among patients with SCD before and after HSCT is critical for gene therapy research which seeks to generate sufficient corrected hemoglobin to reduce polymerization thereby overcoming the red cell pathology of SCD. This study used biotin labeling of RBCs to determine the lifespan of RBCs in patients with SCD compared with patients who have successfully undergone curative HSCT, participants with sickle cell trait (HbAS), and healthy (HbAA) donors. Twenty participants were included in the analysis (SCD pre-HSCT: N = 6, SCD post-HSCT: N = 5, HbAS: N = 6, and HbAA: N = 3). The average RBC lifespan was significantly shorter for participants with SCD pre-HSCT (64.1 days; range, 35-91) compared with those with SCD post-HSCT (113.4 days; range, 105-119), HbAS (126.0 days; range, 119-147), and HbAA (123.7 days; range, 91-147) (P<.001). RBC lifespan correlated with various hematologic parameters and strongly correlated with the average final fraction of sickled RBCs after deoxygenation (P<.001). No adverse events were attributable to the use of biotin and related procedures. Biotin labeling of RBCs is a safe and feasible methodology to evaluate RBC survival in patients with SCD before and after HSCT. Understanding differences in RBC survival may ultimately guide gene therapy protocols to determine hemoglobin composition required to reverse the SCD phenotype as it relates directly to RBC survival. This trial was registered at www.clinicaltrials.gov as #NCT04476277.


Subject(s)
Anemia, Sickle Cell , Hematopoietic Stem Cell Transplantation , Humans , Anemia, Sickle Cell/pathology , Biotin , Erythrocytes/pathology , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Hemoglobins
3.
Nat Commun ; 14(1): 6291, 2023 10 12.
Article in English | MEDLINE | ID: mdl-37828021

ABSTRACT

Hematopoietic stem cell (HSC) gene therapy has curative potential; however, its use is limited by the morbidity and mortality associated with current chemotherapy-based conditioning. Targeted conditioning using antibody-drug conjugates (ADC) holds promise for reduced toxicity in HSC gene therapy. Here we test the ability of an antibody-drug conjugate targeting CD117 (CD117-ADC) to enable engraftment in a non-human primate lentiviral gene therapy model of hemoglobinopathies. Following single-dose CD117-ADC, a >99% depletion of bone marrow CD34 + CD90 + CD45RA- cells without lymphocyte reduction is observed, which results are not inferior to multi-day myeloablative busulfan conditioning. CD117-ADC, similarly to busulfan, allows efficient engraftment, gene marking, and vector-derived fetal hemoglobin induction. Importantly, ADC treatment is associated with minimal toxicity, and CD117-ADC-conditioned animals maintain fertility. In contrast, busulfan treatment commonly causes severe toxicities and infertility in humans. Thus, the myeloablative capacity of single-dose CD117-ADC is sufficient for efficient engraftment of gene-modified HSCs while preserving fertility and reducing adverse effects related to toxicity in non-human primates. This targeted conditioning approach thus provides the proof-of-principle to improve risk-benefit ratio in a variety of HSC-based gene therapy products in humans.


Subject(s)
Hematopoietic Stem Cell Transplantation , Immunoconjugates , Animals , Busulfan/pharmacology , Genetic Therapy/methods , Hematopoietic Stem Cell Transplantation/methods , Hematopoietic Stem Cells , Immunoconjugates/pharmacology , Proto-Oncogene Proteins c-kit/immunology , Proto-Oncogene Proteins c-kit/therapeutic use , Macaca mulatta/immunology
5.
J Trace Elem Med Biol ; 79: 127261, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37421808

ABSTRACT

BACKGROUND: Chronic ulcers represent impaired healing capacity with high mortality in the elderly or patients with systemic disorders such as diabetes. Boron is an effective agent in wound healing by promoting cell migration and proliferation and reducing inflammation in the wound area. This study aimed to evaluate the therapeutic effect of a sodium pentaborate-based topical formulation compared to control on the treatment of diabetic foot ulcers. METHODS: A prospective, double-blind, randomized controlled trial was conducted to apply randomly the topical sodium pentaborate 3% gel or topical conventional remedy (control) by patients diagnosed with diabetic foot ulcers. The 171 eligible participants aged 18-75 years received the allocated medicines twice a day for a month with an allocation ratio of 3:1. Twenty-five days and two months after the end of the trial, participants were reinvestigated for their ulcer condition and any recurrence. Wagner's classification of diabetic foot ulcers was applied to this purpose (0-5). RESULTS: 161 participants (57 females, 104 males; mean age: 59.37) completed this study. After the intervention, most participants in the intervention group had a lower ulcer grade than the control group (adjusted mean difference (95% CI): - 0.91 (-1.1 to -0.73); p < 0.001). Moreover, most participants in the intervention group (n = 109 (90.8%)) were treated at a higher rate than the control group (n = 5 (12.2%)) after intervention (adjusted odds ratio (95% CI): 0.008 (0.002-0.029); p < 0.001). There was no case of recurrence in the intervention group while its rate was (n = 2 (40%)) in the control group (p < 0.001). CONCLUSION: The present study suggests that topical sodium pentaborate gel may help treat and decrease the grade of diabetic foot ulcers and prevent the recurrence of diabetic foot ulcers.


Subject(s)
Diabetes Mellitus , Diabetic Foot , Male , Aged , Female , Humans , Middle Aged , Diabetic Foot/drug therapy , Boron/therapeutic use , Boron/pharmacology , Prospective Studies , Wound Healing
6.
Mol Ther Methods Clin Dev ; 29: 483-493, 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37273902

ABSTRACT

CRISPR-Cas9-based therapeutic genome editing approaches hold promise to cure a variety of human diseases. Recent findings demonstrate pre-existing immunity for the commonly used Cas orthologs from Streptococcus pyogenes (SpCas9) and Staphylococcus aureus (SaCas9) in humans, which threatens the success of this powerful tool in clinical use. Thus, a comprehensive investigation and potential risk assessment are required to exploit the full potential of the system. Here, we investigated existence of immunity to SpCas9 and SaCas9 in control rhesus macaques (Macaca mulatta) alongside monkeys transplanted with either lentiviral transduced or CRISPR-SpCas9 ribonucleoprotein (RNP)-edited cells. We observed significant levels of Cas9 antibodies in the peripheral blood of all transplanted and non-transplanted control animals. Transplantation of ex vivo transduced or SpCas9-mediated BCL11A enhancer-edited cells did not alter the levels of Cas9 antibodies in rhesus monkeys. Following stimulation of peripheral blood cells with SpCas9 or SaCas9, neither Cas9-specific T cells nor cytokine induction were detected. Robust and durable editing frequencies and expression of high levels of fetal hemoglobin in BCL11A enhancer-edited rhesus monkeys with no evidence of an immune response (>3 years) provide an optimistic outlook for the use of ex vivo CRISPR-SpCas9 (RNP)-edited cells.

7.
bioRxiv ; 2023 May 27.
Article in English | MEDLINE | ID: mdl-37292647

ABSTRACT

Gene editing the BCL11A erythroid enhancer is a validated approach to fetal hemoglobin (HbF) induction for ß-hemoglobinopathy therapy, though heterogeneity in edit allele distribution and HbF response may impact its safety and efficacy. Here we compared combined CRISPR-Cas9 endonuclease editing of the BCL11A +58 and +55 enhancers with leading gene modification approaches under clinical investigation. We found that combined targeting of the BCL11A +58 and +55 enhancers with 3xNLS-SpCas9 and two sgRNAs resulted in superior HbF induction, including in engrafting erythroid cells from sickle cell disease (SCD) patient xenografts, attributable to simultaneous disruption of core half E-box/GATA motifs at both enhancers. We corroborated prior observations that double strand breaks (DSBs) could produce unintended on- target outcomes in hematopoietic stem and progenitor cells (HSPCs) such as long deletions and centromere-distal chromosome fragment loss. We show these unintended outcomes are a byproduct of cellular proliferation stimulated by ex vivo culture. Editing HSPCs without cytokine culture bypassed long deletion and micronuclei formation while preserving efficient on-target editing and engraftment function. These results indicate that nuclease editing of quiescent hematopoietic stem cells (HSCs) limits DSB genotoxicity while maintaining therapeutic potency and encourages efforts for in vivo delivery of nucleases to HSCs.

8.
Mol Ther Nucleic Acids ; 31: 452-465, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36852088

ABSTRACT

Transcriptional enhancers can be in physical proximity of their target genes via chromatin looping. The enhancer at the ß-globin locus (locus control region [LCR]) contacts the fetal-type (HBG) and adult-type (HBB) ß-globin genes during corresponding developmental stages. We have demonstrated previously that forcing proximity between the LCR and HBG genes in cultured adult-stage erythroid cells can activate HBG transcription. Activation of HBG expression in erythroid cells is of benefit to patients with sickle cell disease. Here, using the ß-globin locus as a model, we provide proof of concept at the organismal level that forced enhancer rewiring might present a strategy to alter gene expression for therapeutic purposes. Hematopoietic stem and progenitor cells (HSPCs) from mice bearing human ß-globin genes were transduced with lentiviral vectors expressing a synthetic transcription factor (ZF-Ldb1) that fosters LCR-HBG contacts. When engrafted into host animals, HSPCs gave rise to adult-type erythroid cells with elevated HBG expression. Vectors containing ZF-Ldb1 were optimized for activity in cultured human and rhesus macaque erythroid cells. Upon transplantation into rhesus macaques, erythroid cells from HSPCs expressing ZF-Ldb1 displayed elevated HBG production. These findings in two animal models suggest that forced redirection of gene-regulatory elements may be used to alter gene expression to treat disease.

9.
CRISPR J ; 5(5): 660-676, 2022 10.
Article in English | MEDLINE | ID: mdl-36260301

ABSTRACT

With the advent of new genome editing technologies and the emphasis placed on their optimization, the genetic and phenotypic correction of a plethora of diseases sit on the horizon. Ideally, genome editing approaches would provide long-term solutions through permanent disease correction instead of simply treating patients symptomatically. Although various editing machinery options exist, the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas (CRISPR-associated protein) editing technique has emerged as the most popular due to its high editing efficiency, simplicity, and affordability. However, while CRISPR technology is gradually being perfected, optimization is futile without accessible, effective, and safe delivery to the desired cell or tissue. Therefore, it is important that scientists simultaneously focus on inventing and improving delivery modalities for editing machinery as well. In this review, we will discuss the critical details of viral and nonviral delivery systems, including payload, immunogenicity, efficacy in delivery, clinical application, and future directions.


Subject(s)
CRISPR-Associated Proteins , Gene Editing , Humans , Gene Editing/methods , CRISPR-Cas Systems/genetics , CRISPR-Associated Proteins/genetics
11.
Blood ; 140(16): 1774-1789, 2022 10 20.
Article in English | MEDLINE | ID: mdl-35714307

ABSTRACT

Individuals with age-related clonal hematopoiesis (CH) are at greater risk for hematologic malignancies and cardiovascular diseases. However, predictive preclinical animal models to recapitulate the spectrum of human CH are lacking. Through error-corrected sequencing of 56 human CH/myeloid malignancy genes, we identified natural CH driver mutations in aged rhesus macaques matching genes somatically mutated in human CH, with DNMT3A mutations being the most frequent. A CH model in young adult macaques was generated via autologous transplantation of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9-mediated gene-edited hematopoietic stem and progenitor cells (HSPCs), targeting the top human CH genes with loss-of-function (LOF) mutations. Long-term follow-up revealed reproducible and significant expansion of multiple HSPC clones with heterozygous TET2 LOF mutations, compared with minimal expansion of clones bearing other mutations. Although the blood counts of these CH macaques were normal, their bone marrows were hypercellular and myeloid-predominant. TET2-disrupted myeloid colony-forming units isolated from these animals showed a distinct hyperinflammatory gene expression profile compared with wild type. In addition, mature macrophages purified from the CH macaques showed elevated NLRP3 inflammasome activity and increased interleukin-1ß (IL-1ß) and IL-6 production. The model was used to test the impact of IL-6 blockage by tocilizumab, documenting a slowing of TET2-mutated expansion, suggesting that interruption of the IL-6 axis may remove the selective advantage of mutant HSPCs. These findings provide a model for examining the pathophysiology of CH and give insights into potential therapeutic interventions.


Subject(s)
Clonal Hematopoiesis , Dioxygenases , Humans , Young Adult , Animals , Aged , Clonal Hematopoiesis/genetics , Hematopoiesis/genetics , Interleukin-1beta/genetics , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Macaca mulatta , CRISPR-Associated Protein 9 , Interleukin-6/genetics , Clone Cells , DNA-Binding Proteins/genetics , Dioxygenases/genetics
12.
Reprod Biol ; 22(1): 100595, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35121559

ABSTRACT

Leydig cells are responsible for testosterone production in male testis upon stimulation by luteinizing hormone. Inflammation and oxidative stress related Leydig cell dysfunction is one of the major causes of male infertility. Cytoglobin (CYGB) and Neuroglobin (NGB) are two globin family member proteins which protect cells against oxidative stress. In the current study, we established a Lipopolysaccharide (LPS)-induced inflammation model in TM3 Leydig cell culture to study the function of CYGB and NGB proteins under inflammatory conditions. CYGB and NGB were downregulated using siRNA and shRNA based experimental strategies. Overexpression was conducted using lentiviral pLenti-III-CYGB-2A-GFP, and pLenti-III-NGB-2A-GFP vector systems. As testicular macrophages regulate immune function upon inflammation and steroidogenesis of Leydig cells, we generated direct/indirect co-culture systems of TM3 and mouse macrophage (RAW264.7) cells ex vivo. Downregulation of CYGB and NGB induced nitride oxide (NO) release, blocked cell cycle progression, reduced testosterone production and increased inflammatory and apoptotic pathway gene expression in the presence and absence of LPS. On the other hand, CYGB and NGB overexpression reduced TNFα and COX-2 protein expressions and increased the expression of testosterone biogenesis pathway genes upon LPS stimulation. In addition, CYGB and NGB overexpression upregulated testosterone production. The present study successfully established an inflammatory interaction model of TM3 and RAW264.7 cells. Suppression of CYGB and NGB in TM3 cells changed macrophage morphology, enhanced macrophage cell number and NO release in co-culture experiments upon LPS exposure. In summary, these results demonstrate that globin family members might control LPS induced inflammation by regulating apoptotic mechanisms and macrophage response.


Subject(s)
Leydig Cells , Lipopolysaccharides , Animals , Cytoglobin , Inflammation/chemically induced , Leydig Cells/metabolism , Lipopolysaccharides/toxicity , Male , Mice , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neuroglobin
13.
Oncol Res Treat ; 45(4): 197-204, 2022.
Article in English | MEDLINE | ID: mdl-34979503

ABSTRACT

INTRODUCTION: Radiation dermatitis (RD) is a side effect of radiation therapy (RT) which is experienced by over 90% of patients being treated for breast cancer. The current clinical trial was conducted to measure the preventative effects of a boron-based gel on several different clinical outcomes (dermatitis, erythema, dry desquamation, and moist desquamation) after 25 radiotherapy sessions. METHODS: This research used a double-blind parallel-group design with a placebo control (n = 76) and randomized group (n = 181), with all participants being between 18 and 75 years old. Fifteen minutes before each radiotherapy, participants in the intervention group were given a gel containing 3% sodium pentaborate pentahydrate, while those in the placebo group received a gel with no chemical substance. Dermatitis, erythema, dry desquamation, and moist desquamation were compared between the 2 groups. RESULTS: At baseline, there were no significant differences between the groups (p > 0.05), except for body mass index. After 14 days of treatment, dermatitis (98.7% vs. 9.9%; p < 0.001), erythema (96.1% vs. 12.2%; p < 0.001), dry desquamation (50% vs. 3.9%; p < 0.001), and moist desquamation (18.4% vs. 0.6%; p < 0.001) were much more common in the placebo group than the intervention group. To prevent dermatitis, erythema, dry desquamation, and moist desquamation in 1 patient, on average, 1.1 (95% confidence interval [CI]: 1.1-1.2), 1.2 (95% CI: 1.1-1.3), 2.2 (95% CI: 1.7-2.9), and 5.6 (95% CI: 3.8-11.0) patients need to be treated, respectively. CONCLUSION: The boron-based gel has a significant preventive effect on several categories of RD which might be used by clinicians in breast cancer.


Subject(s)
Breast Neoplasms , Radiodermatitis , Adolescent , Adult , Aged , Boron/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/radiotherapy , Double-Blind Method , Female , Humans , Middle Aged , Radiodermatitis/drug therapy , Radiodermatitis/etiology , Radiodermatitis/prevention & control , Young Adult
14.
Mol Ther Methods Clin Dev ; 23: 276-285, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34729375

ABSTRACT

Genome editing is potentially a curative technique available to all individuals with ß-hemoglobinopathies, including sickle cell disease (SCD). Fetal hemoglobin (HbF) inhibits sickle hemoglobin (HbS) polymerization, and it is well described that naturally occurring hereditary persistence of HbF (HPFH) alleviates disease symptoms; therefore, reawakening of developmentally silenced HbF in adult red blood cells (RBCs) has long been of interest as a therapeutic strategy. Recent advances in genome editing platforms, particularly with the use of CRISPR-Cas9, have paved the way for efficient HbF induction through the creation of artificial HPFH mutations, editing of transcriptional HbF silencers, and modulating epigenetic intermediates that govern HbF expression. Clinical trials investigating BCL11A enhancer editing in patients with ß-hemoglobinopathies have demonstrated promising results, although follow-up is short and the number of patients treated to date is low. While practical, economic, and clinical challenges of genome editing are well recognized by the scientific community, potential solutions to overcome these hurdles are in development. Here, we review the recent progress and obstacles yet to be overcome for the most effective and feasible HbF reactivation practice using CRISPR-Cas9 genome editing as a curative strategy for patients with SCD.

15.
Cell Rep Med ; 2(4): 100247, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33948577

ABSTRACT

Sickle cell disease (SCD) is caused by a 20A > T mutation in the ß-globin gene. Genome-editing technologies have the potential to correct the SCD mutation in hematopoietic stem cells (HSCs), producing adult hemoglobin while simultaneously eliminating sickle hemoglobin. Here, we developed high-efficiency viral vector-free non-footprint gene correction in SCD CD34+ cells with electroporation to deliver SCD mutation-targeting guide RNA, Cas9 endonuclease, and 100-mer single-strand donor DNA encoding intact ß-globin sequence, achieving therapeutic-level gene correction at DNA (∼30%) and protein (∼80%) levels. Gene-edited SCD CD34+ cells contributed corrected cells 6 months post-xenograft mouse transplant without off-target δ-globin editing. We then developed a rhesus ß-to-ßs-globin gene conversion strategy to model HSC-targeted genome editing for SCD and demonstrate the engraftment of gene-edited CD34+ cells 10-12 months post-transplant in rhesus macaques. In summary, gene-corrected CD34+ HSCs are engraftable in xenograft mice and non-human primates. These findings are helpful in designing HSC-targeted gene correction trials.


Subject(s)
Anemia, Sickle Cell/genetics , Antigens, CD34/metabolism , Hematopoietic Stem Cells/metabolism , Heterografts/immunology , Macaca mulatta/genetics , Animals , Gene Editing/methods , Gene Targeting/methods , Hematopoietic Stem Cell Transplantation/methods , Hemoglobin, Sickle/genetics , Humans , Mice , RNA, Guide, Kinetoplastida/metabolism , beta-Globins/genetics
16.
Mol Ther Methods Clin Dev ; 21: 121-132, 2021 Jun 11.
Article in English | MEDLINE | ID: mdl-33816645

ABSTRACT

Gene editing with the CRISPR-Cas9 system could revolutionize hematopoietic stem cell (HSC)-targeted gene therapy for hereditary diseases, including sickle cell disease (SCD). Conventional delivery of editing tools by electroporation limits HSC fitness due to its toxicity; therefore, efficient and non-toxic delivery remains crucial. Integrating lentiviral vectors are established for therapeutic gene delivery to engraftable HSCs in gene therapy trials; however, their sustained expression and size limitation preclude their use for CRISPR-Cas9 delivery. Here, we developed a Cas9 protein delivery non-integrating lentiviral system encoding guide RNA and donor DNA, allowing for transient endonuclease function and inclusion of all editing tools in a single vector (all-in-one). We demonstrated efficient one-time correction of the SCD mutation in the endogenous ßs-globin gene up to 42% at the protein level (p < 0.01) with the Cas9 protein delivery non-integrating lentiviral all-in-one system without electroporation. Our findings improve prospects for efficient and safe genome editing.

17.
Sci Transl Med ; 13(591)2021 04 28.
Article in English | MEDLINE | ID: mdl-33910976

ABSTRACT

Hematopoietic stem cell gene therapy for hemoglobin disorders, including sickle cell disease, requires high-efficiency lentiviral gene transfer and robust therapeutic globin expression in erythroid cells. Erythropoietin is a key cytokine for erythroid proliferation and differentiation (erythropoiesis), and truncated human erythropoietin receptors (thEpoR) have been reported in familial polycythemia. We reasoned that coexpression of thEpoR could enhance the phenotypic effect of a therapeutic vector in erythroid cells in xenograft mouse and autologous nonhuman primate transplantation models. We generated thEpoR by deleting 40 amino acids from the carboxyl terminus, allowing for erythropoietin-dependent enhanced erythropoiesis of gene-modified cells. We then designed lentiviral vectors encoding both thEpoR and B cell lymphoma/leukemia 11A (BCL11A)-targeting microRNA-adapted short hairpin RNA (shmiR BCL11A) driven by an erythroid-specific promoter. thEpoR expression enhanced erythropoiesis among gene-modified cells in vitro. We then transplanted lentiviral vector gene-modified CD34+ cells with erythroid-specific expression of both thEpoR and shmiR BCL11A and compared to cells modified with shmiR BCL11A only. We found that thEpoR enhanced shmiR BCL11A-based fetal hemoglobin (HbF) induction in both xenograft mice and rhesus macaques, whereas HbF induction with shmiR BCL11A only was robust, yet transient. thEpoR/shmiR BCL11A coexpression allowed for sustained HbF induction at 20 to 25% in rhesus macaques for 4 to 8 months. In summary, we developed erythroid-specific thEpoR/shmiR BCL11A-expressing vectors, enhancing HbF induction in xenograft mice and rhesus macaques. The sustained HbF induction achieved by addition of thEpoR and shmiR BCL11A may represent a viable gene therapy strategy for hemoglobin disorders.


Subject(s)
Fetal Hemoglobin , Receptors, Erythropoietin , Animals , Erythroid Cells , Fetal Hemoglobin/genetics , Macaca mulatta , Mice , Receptors, Erythropoietin/genetics , Repressor Proteins
19.
Stem Cell Res Ther ; 11(1): 493, 2020 11 24.
Article in English | MEDLINE | ID: mdl-33234163

ABSTRACT

BACKGROUND: Ex vivo production of hematopoietic stem/precursor cells (HSPCs) represents a promising versatile approach for blood disorders. METHODS: To derive definitive HSPCs from human embryonic stem cells (ESCs), we differentiated mesodermally specified embryoid bodies (EBs) on gelatin-coated plates in serum/feeder-free conditions. RESULTS: Seven-day EB maturation followed by an 8-day differentiation period on OP9 cells provided the highest number of definitive (CD34+ CD235a-, 69%, p < 0.01) and lowest number of primitive (CD34- CD235a+, 1.55%, p < 0.01) precursor cells along with the highest colony-forming units (149.8 ± 11.6, p < 0.01) in feeder-free conditions. Maximal HSPC fraction (CD34+ CD38- CD45RA- CD49f+ CD90+) was 7.6-8.9% after 10 days of hematopoietic differentiation with 14.5% adult ß-globin expression following RBC differentiation. Myeloid and erythroid colonies were restricted strictly to the CD34+ CD43+ fraction (370.5 ± 65.7, p < 0.001), while the CD34- CD43+ fraction produced only a small number of colonies (21.6 ± 11.9). In addition, we differentiated the CD34+ CD43+ cells towards T-lymphocytes using the OP9/DLL1 co-culture system demonstrating double-positive T cells (CD4+ CD8+) with CD3+ expression displaying a broad T cell receptor (TCR) repertoire. Confocal imaging of organoid-like structures revealed a close association of CD31+ cells with CD34+ and CD43+ cells, suggesting a potential emergence of HSPCs through endothelial to hematopoietic transition. Furthermore, fluorescently labeled organoids exhibited the emergence of spherical non-attached cells from rare progenitors at the border of the organoid center. CONCLUSIONS: In summary, definitive HSPCs can be derived from ESCs through a dynamic cellular process from an organoid-like structure, where erythroid progeny are capable of producing adult hemoglobin and lymphoid progeny shows a diverse TCR repertoire.


Subject(s)
Hematopoietic Stem Cell Transplantation , Human Embryonic Stem Cells , Antigens, CD34 , Cell Differentiation , Hematopoietic Stem Cells , Humans , Organoids
20.
J Clin Invest ; 130(12): 6677-6687, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32897878

ABSTRACT

Gene editing of the erythroid-specific BCL11A enhancer in hematopoietic stem and progenitor cells (HSPCs) from patients with sickle cell disease (SCD) induces fetal hemoglobin (HbF) without detectable toxicity, as assessed by mouse xenotransplant. Here, we evaluated autologous engraftment and HbF induction potential of erythroid-specific BCL11A enhancer-edited HSPCs in 4 nonhuman primates. We used a single guide RNA (sgRNA) with identical human and rhesus target sequences to disrupt a GATA1 binding site at the BCL11A +58 erythroid enhancer. Cas9 protein and sgRNA ribonucleoprotein complex (RNP) was electroporated into rhesus HSPCs, followed by autologous infusion after myeloablation. We found that gene edits persisted in peripheral blood (PB) and bone marrow (BM) for up to 101 weeks similarly for BCL11A enhancer- or control locus-targeted (AAVS1-targeted) cells. Biallelic BCL11A enhancer editing resulted in robust γ-globin induction, with the highest levels observed during stress erythropoiesis. Indels were evenly distributed across PB and BM lineages. Off-target edits were not observed. Nonhomologous end-joining repair alleles were enriched in engrafting HSCs. In summary, we found that edited HSCs can persist for at least 101 weeks after transplant and biallelic-edited HSCs provide substantial HbF levels in PB red blood cells, together supporting further clinical translation of this approach.


Subject(s)
Gene Editing , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/metabolism , Repressor Proteins , Animals , Humans , Macaca mulatta , Mice , Repressor Proteins/genetics , Repressor Proteins/metabolism , Transplantation, Autologous
SELECTION OF CITATIONS
SEARCH DETAIL
...