Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
G3 (Bethesda) ; 11(1)2021 01 18.
Article in English | MEDLINE | ID: mdl-33561242

ABSTRACT

Cucumis melo (melon or muskmelon) is an important crop in the family of the Cucurbitaceae. Melon is cross pollinated and domesticated at several locations throughout the breeding history, resulting in highly diverse genetic structure in the germplasm. Yet, the relations among the groups and cultivars are still incomplete. We shed light on the melonbreeding history, analyzing structural variations ranging from 50 bp up to 100 kb, identified from whole genome sequences of 100 selected melon accessions and wild relatives. Phylogenetic trees based on SV types completely resolve cultivars and wild accessions into two monophyletic groups and clustering of cultivars largely correlates with their geographic origin. Taking into account morphology, we found six mis-categorized cultivars. Unique inversions are more often shared between cultivars, carrying advantageous genes and do not directly originate from wild species. Approximately 60% of the inversion breaks carry a long poly A/T motif, and following observations in other plant species, suggest that inversions in melon likely resulted from meiotic recombination events. We show that resistance genes in the linkage V region are expanded in the cultivar genomes compared to wild relatives. Furthermore, particular agronomic traits such as fruit ripening, fragrance, and stress response are specifically selected for in the melon subspecies. These results represent distinctive footprints of selective breeding that shaped today's melon. The sequences and genomic relations between land races, wild relatives, and cultivars will serve the community to identify genetic diversity, optimize experimental designs, and enhance crop development.


Subject(s)
Cucumis melo , Cucurbitaceae , Phenotype , Phylogeny , Plant Breeding
2.
Plant J ; 2018 May 29.
Article in English | MEDLINE | ID: mdl-29808512

ABSTRACT

A better understanding of genomic features influencing the location of meiotic crossovers (COs) in plant species is both of fundamental importance and of practical relevance for plant breeding. Using CO positions with sufficiently high resolution from four plant species [Arabidopsis thaliana, Solanum lycopersicum (tomato), Zea mays (maize) and Oryza sativa (rice)] we have trained machine-learning models to predict the susceptibility to CO formation. Our results show that CO occurrence within various plant genomes can be predicted by DNA sequence and shape features. Several features related to genome content and to genomic accessibility were consistently either positively or negatively related to COs in all four species. Other features were found as predictive only in specific species. Gene annotation-related features were especially predictive for maize, whereas in tomato and Arabidopsis propeller twist and helical twist (DNA shape features) and AT/TA dinucleotides were found to be the most important. In rice, high roll (another DNA shape feature) and low CA dinucleotide frequency in particular were found to be associated with CO occurrence. The accuracy of our models was sufficient for Arabidopsis and rice (area under receiver operating characteristic curve, AUROC > 0.5), and was high for tomato and maize (AUROC â‰« 0.5), demonstrating that DNA sequence and shape are predictive for meiotic COs throughout the plant kingdom.

3.
Plant J ; 89(3): 554-564, 2017 02.
Article in English | MEDLINE | ID: mdl-27797425

ABSTRACT

We determined the crossover (CO) distribution, frequency and genomic sequences involved in interspecies meiotic recombination by using parent-assigned variants of 52 F6 recombinant inbred lines obtained from a cross between tomato, Solanum lycopersicum, and its wild relative, Solanum pimpinellifolium. The interspecific CO frequency was 80% lower than reported for intraspecific tomato crosses. We detected regions showing a relatively high and low CO frequency, so-called hot and cold regions. Cold regions coincide to a large extent with the heterochromatin, although we found a limited number of smaller cold regions in the euchromatin. The CO frequency was higher at the distal ends of chromosomes than in pericentromeric regions and higher in short arm euchromatin. Hot regions of CO were detected in euchromatin, and COs were more often located in non-coding regions near the 5' untranslated region of genes than expected by chance. Besides overrepresented CCN repeats, we detected poly-A/T and AT-rich motifs enriched in 1-kb promoter regions flanking the CO sites. The most abundant sequence motifs at CO sites share weak similarity to transcription factor-binding sites, such as for the C2H2 zinc finger factors class and MADS box factors, while InterPro scans detected enrichment for genes possibly involved in the repair of DNA breaks.


Subject(s)
Chromosomes, Plant/genetics , Crossing Over, Genetic , Genome, Plant/genetics , Solanum lycopersicum/genetics , Solanum/genetics , 5' Untranslated Regions/genetics , Crosses, Genetic , DNA, Plant/genetics , Euchromatin/genetics , Genes, Plant/genetics , Haplotypes , Heterochromatin/genetics , Inbreeding , Plant Breeding/methods
4.
PLoS One ; 8(12): e81952, 2013.
Article in English | MEDLINE | ID: mdl-24349158

ABSTRACT

In the present study, to contribute to the understanding of the evolutionary history of sheep, the mitochondrial (mt) DNA polymorphisms occurring in modern Turkish native domestic (n = 628), modern wild (Ovis gmelinii anatolica) (n = 30) and ancient domestic sheep from Oylum Höyük in Kilis (n = 33) were examined comparatively with the accumulated data in the literature. The lengths (75 bp/76 bp) of the second and subsequent repeat units of the mtDNA control region (CR) sequences differentiated the five haplogroups (HPGs) observed in the domestic sheep into two genetic clusters as was already implied by other mtDNA markers: the first cluster being composed of HPGs A, B, D and the second cluster harboring HPGs C, E. To manifest genetic relatedness between wild Ovis gmelinii and domestic sheep haplogroups, their partial cytochrome B sequences were examined together on a median-joining network. The two parallel but wider aforementioned clusters were observed also on the network of Ovis gmelenii individuals, within which domestic haplogroups were embedded. The Ovis gmelinii wilds of the present day appeared to be distributed on two partially overlapping geographic areas parallel to the genetic clusters that they belong to (the first cluster being in the western part of the overall distribution). Thus, the analyses suggested that the domestic sheep may be the products of two maternally distinct ancestral Ovis gmelinii populations. Furthermore, Ovis gmelinii anatolica individuals exhibited a haplotype of HPG A (n = 22) and another haplotype (n = 8) from the second cluster which was not observed among the modern domestic sheep. HPG E, with the newly observed members (n = 11), showed signs of expansion. Studies of ancient and modern mtDNA suggest that HPG C frequency increased in the Southeast Anatolia from 6% to 22% some time after the beginning of the Hellenistic period, 500 years Before Common Era (BCE).


Subject(s)
Biological Evolution , Cytochromes b/classification , DNA, Mitochondrial/classification , Phylogeny , Sheep, Domestic/classification , Sheep/classification , Animals , Cytochromes b/genetics , DNA, Mitochondrial/genetics , Female , Haplotypes , Humans , Male , Mitochondria/genetics , Multigene Family , Phylogeography , Polymorphism, Genetic , Sheep/genetics , Sheep, Domestic/genetics , Turkey
SELECTION OF CITATIONS
SEARCH DETAIL