Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Plant Commun ; 4(5): 100607, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37098653

ABSTRACT

Quantitative disease resistance (QDR) remains the most prevalent form of plant resistance in crop fields and wild habitats. Genome-wide association studies (GWAS) have proved to be successful in deciphering the quantitative genetic basis of complex traits such as QDR. To unravel the genetics of QDR to the devastating worldwide bacterial pathogen Ralstonia solanacearum, we performed a GWAS by challenging a highly polymorphic local mapping population of Arabidopsis thaliana with four R. solanacearum type III effector (T3E) mutants, identified as key pathogenicity determinants after a first screen on an A. thaliana core collection of 25 accessions. Although most quantitative trait loci (QTLs) were highly specific to the identity of the T3E mutant (ripAC, ripAG, ripAQ, and ripU), we finely mapped a common QTL located on a cluster of nucleotide-binding domain and leucine-rich repeat (NLR) genes that exhibited structural variation. We functionally validated one of these NLRs as a susceptibility factor in response to R. solanacearum, named it Bacterial Wilt Susceptibility 1 (BWS1), and cloned two alleles that conferred contrasting levels of QDR. Further characterization indicated that expression of BWS1 leads to suppression of immunity triggered by different R. solanacearum effectors. In addition, we showed a direct interaction between BWS1 and RipAC T3E, and BWS1 and SUPPRESSOR OF G2 ALLELE OF skp1 (SGT1b), the latter interaction being suppressed by RipAC. Together, our results highlight a putative role for BWS1 as a quantitative susceptibility factor directly targeted by the T3E RipAC, mediating negative regulation of the SGT1-dependent immune response.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Bacterial Proteins/genetics , Genome-Wide Association Study , Disease Resistance/genetics , Virulence/genetics , Glucosyltransferases , Arabidopsis Proteins/genetics
2.
Trends Plant Sci ; 28(4): 471-485, 2023 04.
Article in English | MEDLINE | ID: mdl-36522258

ABSTRACT

Harnessing natural genetic variation is an established alternative to artificial genetic variation for investigating the molecular dialog between partners in plant pathosystems. Herein, we review the successes of genome-wide association studies (GWAS) in both plants and pathogens. While GWAS in plants confirmed that the genetic architecture of disease resistance is polygenic, dynamic during the infection kinetics, and dependent on the environment, GWAS shortened the time of identification of quantitative trait loci (QTLs) and revealed both complex epistatic networks and a genetic architecture dependent upon the geographical scale. A similar picture emerges from the few GWAS in pathogens. In addition, the ever-increasing number of functionally validated QTLs has revealed new molecular plant defense mechanisms and pathogenicity determinants. Finally, we propose recommendations to better decode the disease triangle.


Subject(s)
Genome-Wide Association Study , Quantitative Trait Loci , Quantitative Trait Loci/genetics , Phenotype , Plant Diseases/genetics
3.
Mol Plant Pathol ; 23(3): 321-338, 2022 03.
Article in English | MEDLINE | ID: mdl-34939305

ABSTRACT

Ralstonia solanacearum gram-negative phytopathogenic bacterium exerts its virulence through a type III secretion system (T3SS) that translocates type III effectors (T3Es) directly into the host cells. T3E secretion is finely controlled at the posttranslational level by helper proteins, T3SS control proteins, and type III chaperones. The HpaP protein, one of the type III secretion substrate specificity switch (T3S4) proteins, was previously highlighted as a virulence factor on Arabidopsis thaliana Col-0 accession. In this study, we set up a genome-wide association analysis to explore the natural diversity of response to the hpaP mutant of two A. thaliana mapping populations: a worldwide collection and a local population. Quantitative genetic variation revealed different genetic architectures in both mapping populations, with a global delayed response to the hpaP mutant compared to the GMI1000 wild-type strain. We have identified several quantitative trait loci (QTLs) associated with the hpaP mutant inoculation. The genes underlying these QTLs are involved in different and specific biological processes, some of which were demonstrated important for R. solanacearum virulence. We focused our study on four candidate genes, RKL1, IRE3, RACK1B, and PEX3, identified using the worldwide collection, and validated three of them as susceptibility factors. Our findings demonstrate that the study of the natural diversity of plant response to a R. solanacearum mutant in a key regulator of virulence is an original and powerful strategy to identify genes directly or indirectly targeted by the pathogen.


Subject(s)
Arabidopsis , Ralstonia solanacearum , Arabidopsis/microbiology , Bacterial Proteins/metabolism , Genome-Wide Association Study , Plant Diseases/genetics , Plant Diseases/microbiology , Virulence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL