Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 146(14): 10177-10186, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38538570

ABSTRACT

The evolution of electrogenerated gas bubbles during water electrolysis can significantly hamper the overall process efficiency. Promoting the departure of electrochemically generated bubbles during (water) electrolysis is therefore beneficial. For a single bubble, a departure from the electrode surface occurs when buoyancy wins over the downward-acting forces (e.g., contact, Marangoni, and electric forces). In this work, the dynamics of a pair of H2 bubbles produced during the hydrogen evolution reaction in 0.5 M H2SO4 using a dual platinum microelectrode system is systematically studied by varying the electrode distance and the cathodic potential. By combining high-speed imaging and electrochemical analysis, we demonstrate the importance of bubble-bubble interactions in the departure process. We show that bubble coalescence may lead to substantially earlier bubble departure as compared to buoyancy effects alone, resulting in considerably higher reaction rates at a constant potential. However, due to continued mass input and conservation of momentum, repeated coalescence events with bubbles close to the electrode may drive departed bubbles back to the surface beyond a critical current, which increases with the electrode spacing. The latter leads to the resumption of bubble growth near the electrode surface, followed by buoyancy-driven departure. While less favorable at small electrode spacing, this configuration proves to be very beneficial at larger separations, increasing the mean current up to 2.4 times compared to a single electrode under the conditions explored in this study.

2.
Nat Chem ; 15(11): 1532-1540, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37563325

ABSTRACT

Understanding and manipulating gas bubble evolution during electrochemical water splitting is a crucial strategy for optimizing the electrode/electrolyte/gas bubble interface. Here gas bubble dynamics are investigated during the hydrogen evolution reaction on a well-defined platinum microelectrode by varying the electrolyte composition. We find that the microbubble coalescence efficiency follows the Hofmeister series of anions in the electrolyte. This dependency yields very different types of H2 gas bubble evolution in different electrolytes, ranging from periodic detachment of a single H2 gas bubble in sulfuric acid to aperiodic detachment of small H2 gas bubbles in perchloric acid. Our results indicate that the solutal Marangoni convection, induced by the anion concentration gradient developing during the reaction, plays a critical role at practical current density conditions. The resulting Marangoni force on the H2 gas bubble and the bubble departure diameter therefore depend on how surface tension varies with concentration for different electrolytes. This insight provides new avenues for controlling bubble dynamics during electrochemical gas bubble formation.

SELECTION OF CITATIONS
SEARCH DETAIL
...