Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Langmuir ; 39(31): 10788-10794, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37494546

ABSTRACT

Thin transition metal carbides (TMCs) garnered significant attention in recent years due to their attractive combination of mechanical and electrical properties with chemical and thermal stability. On the other hand, a complete picture of how defects affect the physical properties and application potential of this emerging class of materials is lacking. Here, we present an atomic-resolution study of defects on thin crystals of molybdenum carbide (α-Mo2C) grown via chemical vapor deposition (CVD) by way of conductive atomic force microscopy (C-AFM) measurements under ambient conditions. Defects are characterized based on the type (enhancement/attenuation) and spatial extent (compact/extended) of the effect they have on the conductivity landscape of the crystal surfaces. Ab initio calculations performed by way of density functional theory (DFT) are employed to gather clues about the identity of the defects.

2.
J Phys Condens Matter ; 35(8)2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36541523

ABSTRACT

High-performance rechargeable batteries are becoming very important for high-end technologies with their ever increasing application areas. Hence, improving the performance of such batteries has become the main bottleneck to transferring high-end technologies to end users. In this study, we propose an argon intercalation strategy to enhance battery performance via engineering the interlayer spacing of honeycomb structures such as graphite, a common electrode material in lithium-ion batteries (LIBs). Herein, we systematically investigated the LIB performance of graphite and hexagonal boron nitride (h-BN) when argon atoms were sent into between their layers by using first-principles density-functional-theory calculations. Our results showed enhanced lithium binding for graphite and h-BN structures when argon atoms were intercalated. The increased interlayer space doubles the gravimetric lithium capacity for graphite, while the volumetric capacity also increased by around 20% even though the volume was also increased. Theab initiomolecular dynamics simulations indicate the thermal stability of such graphite structures against any structural transformation and Li release. The nudged-elastic-band calculations showed that the migration energy barriers were drastically lowered, which promises fast charging capability for batteries containing graphite electrodes. Although a similar level of battery promise was not achieved for h-BN material, its enhanced battery capabilities by argon intercalation also support that the argon intercalation strategy can be a viable route to enhance such honeycomb battery electrodes.

3.
Phys Chem Chem Phys ; 24(12): 7430-7441, 2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35266937

ABSTRACT

Two-dimensional Transition Metal Dichalcogenides (TMDs) possessing extraordinary physical properties at reduced dimensionality have attracted interest due to their promise in electronic and optical device applications. However, TMD monolayers can show a broad range of different properties depending on their crystal phase; for example, H phases are usually semiconductors, while the T phases are metallic. Thus, controlling phase transitions has become critical for device applications. In this study, the energetically low-lying crystal structures of pristine and Janus TMDs are investigated by using ab initio Nudged Elastic Band and molecular dynamics simulations to provide a general explanation for their phase stability and transition properties. Across all materials investigated, the T phase is found to be the least stable and the H phase is the most stable except for WTe2, while the T' and T'' phases change places according to the TMD material. The transition energy barriers are found to be large enough to hint that even the higher energy phases are unlikely to undergo a phase transition to a more stable phase if they can be achieved except for the least stable T phase, which has zero barrier towards the T' phase. Indeed, in molecular dynamics simulations the thermodynamically least stable T phase transformed into the T' phase spontaneously while in general no other phase transition was observed up to 2100 K for the other three phases. Thus, the examined T', T'' and H phases were shown to be mostly stable and do not readily transform into another phase. Furthermore, so-called mixed phase calculations considered in our study explain the experimentally observed lateral hybrid structures and point out that the coexistence of different phases is strongly stable against phase transitions. Indeed, stable complex structures such as metal-semiconductor-metal architectures, which have immense potential to be used in future device applications, are also possible based on our investigation.

4.
J Phys Chem Lett ; 10(4): 727-734, 2019 Feb 21.
Article in English | MEDLINE | ID: mdl-30694678

ABSTRACT

The adsorption and diffusion of Na, K, and Ca atoms on MXene/graphene heterostructures of MXene systems Sc2C(OH)2, Ti2CO2, and V2CO2 are systematically investigated by using first-principles methods. We found that alkali metal intercalation is energetically favorable and thermally stable for Ti2CO2/graphene and V2CO2/graphene heterostructures but not for Sc2C(OH)2. Diffusion kinetics calculations showed the advantage of MXene/graphene heterostructures over sole MXene systems as the energy barriers are halved for the considered alkali metals. Low energy barriers are found for Na and K ions, which are promising for fast charge/discharge rates. Calculated voltage profiles reveal that estimated high capacities can be fully achieved for Na ion in V2CO2/graphene and Ti2CO2/graphene heterostructures. Our results indicate that Ti2CO2/graphene and V2CO2/graphene electrode materials are very promising for Na ion battery applications. The former could be exploited for low voltage applications while the latter will be more appropriate for higher voltages.

5.
J Phys Chem Lett ; 9(15): 4267-4274, 2018 Aug 02.
Article in English | MEDLINE | ID: mdl-29996059

ABSTRACT

Electrenes, an atomically thin form of layered electrides, are very recent members of the 2D materials family. In this work, we employed first-principle calculations to determine stable, exfoliatable, and application-promising 2D electrene materials among possible M2X compounds, where M is a group II-A metal and X is a nonmetal element (C, N, P, As, and Sb). The promise of stable electrene compounds for battery applications is assessed via their exfoliation energy, adsorption properties, and migration energy barriers toward relevant Li, Na, K, and Ca atoms. Our calculations revealed five new stable electrene candidates in addition to previously known Ca2N and Sr2N. Among these seven dynamically stable electrenes, Ba2As, Ba2P, Ba2Sb, Ca2N, Sr2N, and Sr2P are found to be very promising for either K or Na ion batteries due to their extremely low migration energy barriers (5-16 meV), which roughly demonstrates 105 times higher mobility than graphene and two to four times higher mobility than other promising 2D materials such as MXene (Mo2C).

6.
Faraday Discuss ; 208(0): 53-66, 2018 09 03.
Article in English | MEDLINE | ID: mdl-29796531

ABSTRACT

The relative stabilities of different chemical arrangements of Pd-Ir and Au-Rh nanoalloys (and their pure metal equivalents) are studied, for a range of compositions, for fcc truncated octahedral 38- and 79-atom nanoparticles (NPs). For the 38-atom NPs, comparisons are made of pure and alloy NPs supported on a TiO2(110) slab. The relative energies of different chemical arrangements are found to be similar for Pd-Ir and Au-Rh nanoalloys, and depend on the cohesive and surface energies of the component metals. For supported nanoalloys on TiO2, the interaction with the surface is greater for Ir (Rh) than Pd (Au): most of the pure NPs and nanoalloys preferentially bind to the TiO2 surface in an edge-on configuration. When Au-Rh nanoalloys are bound to the surface through Au, the surface binding strength is lower than for the pure Au NP, while the Pd-surface interaction is found to be greater for Pd-Ir nanoalloys than for the pure Pd NP. However, alloying leads to very little difference in Ir-surface and Rh-surface binding strength. Comparing the relative stabilities of the TiO2-supported NPs, the results for Pd-Ir and Au-Rh nanoalloys are the same: supported Janus NPs, whose Ir (Rh) atoms bind to the TiO2 surface, bind most strongly to the surface, becoming closer in energy to the core-shell configurations (Ir@Pd and Rh@Au) which are favoured for the free particles.

7.
Phys Chem Chem Phys ; 19(39): 27090-27098, 2017 Oct 11.
Article in English | MEDLINE | ID: mdl-28960217

ABSTRACT

The structures and surface adsorption sites of Pd-Ir nanoalloys are crucial to the understanding of their catalytic performance because they can affect the activity and selectivity of nanocatalysts. In this article, density functional theory (DFT) calculations are performed on bare Pd-Ir nanoalloys to systematically explore their stability and chemical ordering properties, before studying the adsorption of CO on the nanoalloys. First, the structural stability of 38-atom and 79-atom truncated octahedral (TO) Pd-Ir nanoalloys are investigated. Then the adsorption properties and preferred adsorption sites of CO on 38-atom Pd-Ir nanoalloys are considered. The PdshellIrcore structure, which has the lowest energy of all the considered isomers, exhibits the highest structural stability, while the PdcoreIrshell configuration is the least stable. In addition, the adsorption strength of CO on Ir atoms is found to be greater than on Pd for Pd-Ir nanoclusters. The preferred adsorption sites of CO on pure Pd and Ir clusters are in agreement with calculations and experiments on extended Pd and Ir surfaces. In addition, d-band center and charge effects on CO adsorption strength on Pd-Ir nanoalloys are analyzed by comparison with pure clusters. The study provides a valuable theoretical insight into catalytically active Pd-Ir nanoalloys.

8.
Sci Rep ; 6: 35226, 2016 10 14.
Article in English | MEDLINE | ID: mdl-27739480

ABSTRACT

Heterogeneous catalysis, which is widely used in the chemical industry, makes a great use of supported late-transition-metal nanoparticles, and bimetallic catalysts often show superior catalytic performances as compared to their single metal counterparts. In order to optimize catalyst efficiency and discover new active combinations, an atomic-level understanding and control of the catalyst structure is desirable. In this work, the structure of catalytically active AuRh bimetallic nanoparticles prepared by colloidal methods and immobilized on rutile titania nanorods was investigated using aberration-corrected scanning transmission electron microscopy. Depending on the applied post-treatment, different types of segregation behaviours were evidenced, ranging from Rh core - Au shell to Janus via Rh ball - Au cup configuration. The stability of these structures was predicted by performing density-functional-theory calculations on unsupported and titania-supported Au-Rh clusters; it can be rationalized from the lower surface and cohesion energies of Au with respect to Rh, and the preferential binding of Rh with the titania support. The bulk-immiscible AuRh/TiO2 system can serve as a model to understand similar supported nanoalloy systems and their synergistic behaviour in catalysis.

9.
J Phys Condens Matter ; 28(22): 224007, 2016 06 08.
Article in English | MEDLINE | ID: mdl-26979335

ABSTRACT

A range of models of free standing and Ag(1 1 1)-supported stoichiometric ZnO films with coverages between 2-3 monolayers are studied using density functional calculations. Following experimental observations we focus on stoichiometric hexagonal and triangular ad-layer islands grown on top of two complete ZnO monolayers. The adlayer islands display distinct edge and corner reconstructions and are found to induce a structural transition extending from the island core to the layered phase below. Based on our results we propose a general model of ad-layer triangular island structure based on seven regions exhibiting four distinct polymorphs.

10.
Nanoscale ; 7(10): 4361-6, 2015 Mar 14.
Article in English | MEDLINE | ID: mdl-25679977

ABSTRACT

Experimentally, Ce2O3 films are used to study cerium oxide in its fully or partially reduced state, as present in many applications. We have explored the space of low energy Ce2O3 nanofilms using structure prediction and density functional calculations, yielding more than 30 distinct nanofilm structures. First, our results help to rationalize the roles of thermodynamics and kinetics in the preparation of reduced ceria nanofilms with different bulk crystalline structures (e.g. A-type or bixbyite) depending on the support used. Second, we predict a novel, as yet experimentally unresolved, nanofilm which has a structure that does not correspond to any previously reported bulk A2B3 phase and which has an energetic stability between that of A-type and bixbyite. To assist identification and fabrication of this new Ce2O3 nanofilm we calculate some observable properties and propose supports for its epitaxial growth.

11.
Nanoscale ; 6(24): 14754-65, 2014 Dec 21.
Article in English | MEDLINE | ID: mdl-25354937

ABSTRACT

We employ global optimisation to investigate how oxide nanoclusters of increasing size can best adapt their structure to lower the system energy when interacting with a realistic extended metal support. Specifically, we focus on the (ZnO)@Ag(111) system where experiment has shown that the infinite Ag(111)-supported ZnO monolayer limit corresponds to an epitaxially 7 : 8 matched graphene-like (Zn(3)O(3))-based hexagonal sheet. Using a two-stage search method based on classical interatomic potentials and then on more accurate density functional theory, we report global minina candidate structures for Ag-supported (ZnO)n cluster with sizes ranging from n = 1-24. Comparison with the respective global minina structure of free space (ZnO)n clusters reveals that the surface interaction plays a decisive role in determining the lowest energy Ag-supported (ZnO)n cluster structures. Whereas free space (ZnO)n clusters tend to adopt cage-like bubble structures as they grow larger, Ag-supported (ZnO)n clusters of increasing size become progressively more like planar cuts from the infinite graphene-like ZnO single monolayer. This energetic favourability for planar hexagonal Ag-supported clusters over their 3D counterparts can be partly rationalised by the ZnO-Ag(111) epitaxial matching and the increased number of close interactions with the Ag surface. Detailed analysis shows that this tendency can also be attributed to the capacity of 2D clusters to distort to improve their interaction with the Ag surface relative to more rigid 3D bubble cluster isomers. For the larger sized clusters we find that the adsorption energies and most stable structural types appear to be rather converged confirming that our study makes a bridge between the Ag-supported ZnO monomer and the infinite Ag-supported ZnO monolayer.

12.
Nanoscale ; 6(2): 1181-7, 2014 Jan 21.
Article in English | MEDLINE | ID: mdl-24301631

ABSTRACT

Considering 105 ZnO polymorphs we use many body GW and density functional based calculations to probe how the band gap is affected by nanoporosity. Within a reasonable range of energetic stability, we predict that nanoporosity can induce band gap increases of up to ~1.5 eV relative to wurtzite ZnO. Our results further imply that structural stability and band gap increase are fundamentally linked to pore system dimensionality. We suggest that nanoporosity could be employed as a general band gap engineering method for morphologically and electronically tailored functional materials.

13.
Phys Rev Lett ; 110(24): 245501, 2013 Jun 14.
Article in English | MEDLINE | ID: mdl-25165935

ABSTRACT

We generate a wide range of hexagonal sheet-based ZnO polymorphs inspired by enumeration of their characteristic underlying nets. Evaluating the bulk and nanofilm stabilities of these structures with ab initio calculations allows for an unprecedented overview of (nano)polymorphism in wurtzite materials. We find a rich low energy nanofilm polymorphism with a totally distinct stability ordering to that in the bulk. From this general basis we provide new insights into structural transitions observed during epitaxial growth and predictions for nanofilm stability with varying strain or thickness.

14.
J Phys Condens Matter ; 23(33): 334215, 2011 Aug 24.
Article in English | MEDLINE | ID: mdl-21813949

ABSTRACT

A single sheet of zinc oxide (ZnO) based on the same flat two-dimensional (2D) hexagonal topology as graphene, but with alternating neighbouring Zn and O atoms in place of carbon atoms, is studied theoretically. Following experimental studies, the adsorption of 2D-ZnO with the Ag(111) surface is investigated using density functional theory, with and without a semi-empirical correction for dispersive interactions, and with classical interatomic potentials. The interaction of H atoms with the hexagonal Zn(3)O(3) rings of 2D-ZnO is given special attention where multi-centre bond formation is observed to significantly assist the transport of H atoms through the 2D-ZnO sheet.


Subject(s)
Graphite/chemistry , Hydrogen/chemistry , Models, Chemical , Models, Theoretical , Silver/chemistry , Zinc Oxide/chemistry , Adsorption , Quantum Theory , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...