Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant J ; 109(2): 432-446, 2022 01.
Article in English | MEDLINE | ID: mdl-34555243

ABSTRACT

Ozone (O3 ) is a damaging air pollutant to crops. As one of the most reactive oxidants known, O3 rapidly forms other reactive oxygen species (ROS) once it enters leaves through stomata. Those ROS in turn can cause oxidative stress, reduce photosynthesis, accelerate senescence, and decrease crop yield. To improve and adapt our feed, fuel, and food supply to rising O3 pollution, a number of Free Air Concentration Enrichment (O3 -FACE) facilities have been developed around the world and have studied key staple crops. In this review, we provide an overview of the FACE facilities and highlight some of the lessons learned from the last two decades of research. We discuss the differences between C3 and C4 crop responses to elevated O3 , the possible trade-off between productivity and protection, genetic variation in O3 response within and across species, and how we might leverage this observed variation for crop improvement. We also highlight the need to improve understanding of the interaction between rising O3 pollution and other aspects of climate change, notably drought. Finally, we propose the use of globally modeled O3 data that are available at increasing spatial and temporal resolutions to expand upon the research conducted at the limited number of global O3 -FACE facilities.


Subject(s)
Air Pollutants/adverse effects , Climate Change , Crops, Agricultural/physiology , Ozone/adverse effects , Photosynthesis , Agriculture , Air Pollution/adverse effects , Carbon Dioxide/metabolism , Crops, Agricultural/drug effects , Crops, Agricultural/genetics , Droughts , Genetic Variation , Oxidative Stress , Photosynthesis/drug effects
2.
Proteins ; 87(11): 931-942, 2019 11.
Article in English | MEDLINE | ID: mdl-31162724

ABSTRACT

Like many Gram-negative pathogens, Shigella rely on a type three secretion system (T3SS) for injection of effector proteins directly into eukaryotic host cells to initiate and sustain infection. Protein secretion through the needle-like type three secretion apparatus (T3SA) requires ATP hydrolysis by the T3SS ATPase Spa47, making it a likely target for in vivo regulation of T3SS activity and an attractive target for small molecule therapeutics against shigellosis. Here, we developed a model of an activated Spa47 homo-hexamer, identifying two distinct regions at each protomer interface that we hypothesized to provide intermolecular interactions supporting Spa47 oligomerization and enzymatic activation. Mutational analysis and a series of high-resolution crystal structures confirm the importance of these residues, as many of the engineered mutants are unable to form oligomers and efficiently hydrolyze ATP in vitro. Furthermore, in vivo evaluation of Shigella virulence phenotype uncovered a strong correlation between T3SS effector protein secretion, host cell membrane disruption, and cellular invasion by the tested mutant strains, suggesting that perturbation of the identified interfacial residues/interactions influences Spa47 activity through preventing oligomer formation, which in turn regulates Shigella virulence. The most impactful mutations are observed within the conserved Site 2 interface where the native residues support oligomerization and likely contribute to a complex hydrogen bonding network that organizes the active site and supports catalysis. The critical reliance on these conserved residues suggests that aspects of T3SS regulation may also be conserved, providing promise for the development of a cross-species therapeutic that broadly targets T3SS ATPase oligomerization and activation.


Subject(s)
Adenosine Triphosphatases/metabolism , Dysentery, Bacillary/metabolism , Shigella flexneri/physiology , Type III Secretion Systems/metabolism , Adenosine Triphosphatases/chemistry , Amino Acid Sequence , HeLa Cells , Host-Pathogen Interactions , Humans , Models, Molecular , Protein Conformation , Protein Multimerization , Shigella flexneri/chemistry , Shigella flexneri/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL
...