Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Article in English | MEDLINE | ID: mdl-27583302

ABSTRACT

Recent advances in the development of functional materials offer new tools to dissect human health and disease mechanisms. The use of tunable surfaces is especially appealing as substrates can be tailored to fit applications involving specific cell types or tissues. Here we use tunable materials to facilitate the three-dimensional (3D) analysis of BRCA1 gene regulatory complexes derived from human cancer cells. We employed a recently developed microchip platform to isolate BRCA1 protein assemblies natively formed in breast cancer cells with and without BRCA1 mutations. The captured assemblies proved amenable to cryo-electron microscopy (EM) imaging and downstream computational analysis. Resulting 3D structures reveal the manner in which wild-type BRCA1 engages the RNA polymerase II (RNAP II) core complex that contained K63-linked ubiquitin moieties-a putative signal for DNA repair. Importantly, we also determined that molecular assemblies harboring the BRCA15382insC mutation exhibited altered protein interactions and ubiquitination patterns compared to wild-type complexes. Overall, our analyses proved optimal for developing new structural oncology applications involving patient-derived cancer cells, while expanding our knowledge of BRCA1's role in gene regulatory events.

3.
Sci Rep ; 5: 14440, 2015 Sep 23.
Article in English | MEDLINE | ID: mdl-26395823

ABSTRACT

We present a new molecular toolkit to investigate protein assemblies natively formed in the context of human disease. The system employs tunable microchips that can be decorated with switchable adaptor molecules to select for target proteins of interest and analyze them using molecular microscopy. Implementing our new streamlined microchip approach, we could directly visualize BRCA1 gene regulatory complexes from patient-derived cancer cells for the first time.


Subject(s)
BRCA1 Protein/metabolism , Breast Neoplasms/pathology , Microarray Analysis/methods , Tumor Suppressor Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , BRCA1 Protein/genetics , Breast Neoplasms/genetics , Cell Line, Tumor , Female , Gene Expression Regulation/genetics , Humans , Protein Conformation , RNA Polymerase II/metabolism , Ubiquitin/metabolism
4.
J Anal Mol Tech ; 2(1)2015 Aug.
Article in English | MEDLINE | ID: mdl-27819069

ABSTRACT

The molecular mechanisms by which RNA viruses coordinate their transcriptional activities are not fully understood. For rotavirus, an important pediatric gastroenteric pathogen, transcription occurs within a double-layered particle that encloses the viral genome. To date, there remains very little structural information available for actively-transcribing rotavirus double-layered particles, which could provide new insights for antiviral development. To improve our vision of these viral assemblies, we developed a new combinatorial strategy that utilizes currently available high-resolution image processing tools. First, we employed a 3D classification routine that allowed us to sort transcriptionally-active rotavirus assemblies on the basis of their internal density. Next, we implemented an additional 3D refinement procedure using the most active class of DLPs. For comparison, the refined structures were computed in parallel by (1) enforcing icosahedral symmetry, and by (2) using no symmetry operators. Comparing the resulting structures, we were able to visualize the continuum that exists between viral capsid proteins and the viral RNA for the first time.

5.
Lab Chip ; 13(2): 216-9, 2013 Jan 21.
Article in English | MEDLINE | ID: mdl-23208001

ABSTRACT

We present a novel microfluidic platform to examine biological assemblies at high-resolution. We have engineered a functionalized chamber that serves as a "nanoscale biosphere" to capture and maintain rotavirus double-layered particles (DLPs) in a liquid environment. The chamber can be inserted into the column of a transmission electron microscope while being completely isolated from the vacuum system. This configuration allowed us to determine the structure of biological complexes at nanometer-resolution within a self-contained vessel. Images of DLPs were used to calculate the first 3D view of macromolecules in solution. We refer to this new fluidic visualization technology as in situ molecular microscopy.


Subject(s)
Microfluidic Analytical Techniques , Rotavirus/physiology , Cryoelectron Microscopy , Immunoglobulin G/immunology , Viral Proteins/chemistry , Viral Proteins/metabolism , Virus Assembly/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...