Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
JCI Insight ; 4(15)2019 08 08.
Article in English | MEDLINE | ID: mdl-31391341

ABSTRACT

Age-related macular degeneration (AMD) is the leading cause of central retinal vision loss worldwide, with an estimated 1 in 10 people over the age of 55 showing early signs of the condition. There are currently no forms of therapy available for the end stage of dry AMD, geographic atrophy (GA). Here, we show that the inner blood-retina barrier (iBRB) is highly dynamic and may play a contributory role in GA development. We have discovered that the gene CLDN5, which encodes claudin-5, a tight junction protein abundantly expressed at the iBRB, is regulated by BMAL1 and the circadian clock. Persistent suppression of claudin-5 expression in mice exposed to a cholesterol-enriched diet induced striking retinal pigment epithelium (RPE) cell atrophy, and persistent targeted suppression of claudin-5 in the macular region of nonhuman primates induced RPE cell atrophy. Moreover, fundus fluorescein angiography in human and nonhuman primate subjects showed increased retinal vascular permeability in the evening compared with the morning. These findings implicate an inner retina-derived component in the early pathophysiological changes observed in AMD, and we suggest that restoring the integrity of the iBRB may represent a novel therapeutic target for the prevention and treatment of GA secondary to dry AMD.


Subject(s)
ARNTL Transcription Factors/metabolism , Blood-Retinal Barrier/pathology , Circadian Clocks/physiology , Claudin-5/metabolism , Geographic Atrophy/pathology , Animals , Blood-Retinal Barrier/diagnostic imaging , Blood-Retinal Barrier/drug effects , Capillary Permeability/drug effects , Capillary Permeability/physiology , Chlorocebus aethiops , Claudin-5/genetics , Diet, High-Fat/adverse effects , Disease Models, Animal , Fluorescein Angiography , Fundus Oculi , Gene Knockdown Techniques , Geographic Atrophy/drug therapy , Geographic Atrophy/etiology , Geographic Atrophy/prevention & control , Healthy Volunteers , Humans , Magnetic Resonance Imaging , Mice , Mice, Transgenic , Photoperiod , RNA, Small Interfering/metabolism , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/pathology
2.
Ecotoxicology ; 27(7): 900-907, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29802488

ABSTRACT

Imidacloprid is the most widely used of the nicotinoid insecticides, the fastest growing class of pesticides on the global market. Although less toxic to mammals and birds compared to organophosphates, nicotinoids have the potential to impact non-target invertebrates, especially through sublehal effects on behavior, physiology, reproduction, and development. We investigated the impact of sublethal doses of imidacloprid on the defensive responses of rusty crayfish Orconectes rusticus exposed to 0, 1, 10, and 100 µg•L-1 of imidacloprid for 10 days (n = 7 crayfish per treatment). Defensive behaviors were examined with the rod test, in which a glass rod was jabbed into the crayfish's container at a 90 degree angle from the bottom and about 0.5 cm directly in front of the crayfish. Crayfish responded to the rod aggressively with claw raising and pinching, neutrally (no response), or by backing or tail-flipping away. The frequency of neutral responses more than doubled after four days in the high (100 µg•L-1) group and after eight days in the low (1 µg•L-1) exposure group. Furthermore, most crayfish in the 100 µg•L-1 treatment were not able to right themselves within 30 s when placed on their backs. Several studies have reported concentrations of imidacloprid contamination in freshwater ecosystems that exceed this study's lowest exposure scenario, 1 µg•L-1. We therefore conclude that imidacloprid contamination reduces the defensive behaviors of crayfish, impairing their ability to survive in habitats where they play important ecological roles.


Subject(s)
Agonistic Behavior/drug effects , Astacoidea/drug effects , Insecticides/toxicity , Neonicotinoids/toxicity , Nitro Compounds/toxicity , Water Pollutants, Chemical/toxicity , Animals , Dose-Response Relationship, Drug , Female , Male , Random Allocation
SELECTION OF CITATIONS
SEARCH DETAIL
...