Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Neurobiol ; 60(12): 6757-6773, 2023 Dec.
Article in English | MEDLINE | ID: mdl-34665408

ABSTRACT

Stress is related to major depressive disorder (MDD). This study investigated the action that early stress, represented by maternal deprivation (MD), has on the behavior and oxidative stress of Wistar female and male rats. Also, it was evaluated whether changes induced by MD could be reversed by environmental enrichment (EE). Male and female rats were divided into a non-MD and MD group. The MD group was subdivided into 3 groups: (1) assessed on the 31st day after exposure to EE for 10 days, (2) assessed on the 41st day after exposure to EE for 20 days, and (3) assessed on the 61st day after exposure to EE for 40 days. Behavioral tests were performed (memory habituation and elevated plus maze). Oxidative stress parameters were evaluated peripherally. MD was able to promote anxiety-like behavior at postnatal day (PND) 41 and impair memory at PND 31 and PND 61 in male and PND 41 and PND 61 in female rats. MD was associated with increased oxidative stress parameters (reactive species to thiobarbituric acid levels (TBARS), carbonylated proteins, nitrite/nitrate concentration), and altered antioxidant defenses (superoxide dismutase (SOD) and catalase (CAT), and sulfhydryl content) in different stages of development. The EE was able to reverse almost all behavioral and biochemical changes induced by MD; however, EE effects were sex and developmental period dependent. These findings reinforce the understanding of the gender variable as a biological factor in MDD related to MD and EE could be considered a treatment option for MDD treatment and its comorbidities.


Subject(s)
Depressive Disorder, Major , Female , Male , Animals , Rats , Rats, Wistar , Maternal Deprivation , Oxidative Stress , Antioxidants
2.
J Psychiatr Res ; 87: 81-87, 2017 04.
Article in English | MEDLINE | ID: mdl-28017918

ABSTRACT

Recent studies show that activation of the mTOR signaling pathway is required for the rapid antidepressant actions of glutamate N-methyl-D-aspartate (NMDA) receptor antagonists. A relationship between mTOR kinase and the endoplasmic reticulum (ER) stress pathway, also known as the unfolded protein response (UPR) has been shown. We evaluate the effects of ketamine administration on the mTOR signaling pathway and proteins of UPR in the prefrontal cortex (PFC), hippocampus, amygdala and nucleus accumbens, after the inhibiton of mTOR signaling in the PFC. Male adult Wistar rats received pharmacological mTOR inhibitor, rapamycin (0.2 nmol), or vehicle into the PFC and then a single dose of ketamine (15 mg/kg, i.p.). The immunocontent of mTOR, eukaryotic initiation factor 4E-binding protein 1 (4E-BP1), eukaryotic elongation factor 2 kinase (eEF2K) homologous protein (CHOP), PKR-like ER kinase (PERK) and inositol-requiring enzyme 1 (IRE1) - alpha were determined in the brain. The mTOR levels were reduced in the rapamycin group treated with saline and ketamine in the PFC; p4EBP1 levels were reduced in the rapamycin group treated with ketamine in the PFC and nucleus accumbens; the levels of peEF2K were increased in the PFC in the vehicle group treated with ketamine and reduced in the rapamycin group treated with ketamine. The PERK and IRE1-alpha levels were decreased in the PFC in the rapamycin group treated with ketamine. Our results suggest that mTOR signaling inhibition by rapamycin could be involved, at least in part, with the mechanism of action of ketamine; and the ketamine antidepressant on ER stress pathway could be also mediated by mTOR signaling pathway in certain brain structures.


Subject(s)
Endoplasmic Reticulum Stress/drug effects , Excitatory Amino Acid Antagonists/pharmacology , Immunosuppressive Agents/pharmacology , Ketamine/pharmacology , Prefrontal Cortex/drug effects , Signal Transduction/drug effects , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/metabolism , Analysis of Variance , Animals , Drug Administration Routes , Enzyme Inhibitors/pharmacology , Male , Rats , Rats, Wistar
3.
Behav Brain Res ; 320: 225-232, 2017 03 01.
Article in English | MEDLINE | ID: mdl-27913254

ABSTRACT

Stress in early life has been appointed as an important phenomenon in the onset of depression and poor response to treatment with classical antidepressants. Furthermore, childhood trauma triggers epigenetic changes, which are associated with the pathophysiology of major depressive disorder (MDD). Treatment with atypical antipsychotics such as quetiapine, exerts therapeutic effect for MDD patients and induces epigenetic changes. This study aimed to analyze the effect of chronic treatment with quetiapine (20mg/kg) on depressive-like behavior of rats submitted to maternal deprivation (MD), as well as the activity of histone acetylation by the enzymes histone acetyl transferases (HAT) and deacetylases (HDAC) and DNA methylation, through DNA methyltransferase enzyme (DNMT) in the prefrontal cortex (PFC), nucleus accumbens (NAc) and hippocampus. Maternally deprived rats had a depressive-like behavior in the forced swimming test and an increase in the HDAC and DNMT activities in the hippocampus and NAc. Treatment with quetiapine reversed depressive-like behavior and reduced the DNMT activity in the hippocampus. This is the first study to show the antidepressant-like effect of quetiapine in animals subjected to MD and a protective effect by quetiapine in reducing epigenetic changes induced by stress in early life. These results reinforce an important role of quetiapine as therapy for MDD.


Subject(s)
Antidepressive Agents/therapeutic use , Anxiety Disorders/drug therapy , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA Methylation/drug effects , Maternal Deprivation , Quetiapine Fumarate/therapeutic use , Analysis of Variance , Animals , Anxiety Disorders/etiology , Brain/drug effects , Brain/enzymology , Exploratory Behavior/drug effects , Female , Histone Acetyltransferases/metabolism , Histone Deacetylases/metabolism , Immobility Response, Tonic/drug effects , Male , Pregnancy , Rats , Rats, Wistar , Swimming/psychology
4.
Mol Neurobiol ; 54(7): 5335-5346, 2017 09.
Article in English | MEDLINE | ID: mdl-27590136

ABSTRACT

Studies indicated that mammalian target of rapamycin (mTOR), oxidative stress, and inflammation are involved in the pathophysiology of major depressive disorder (MDD). Ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, has been identified as a novel MDD therapy; however, the antidepressant mechanism is not fully understood. In addition, the effects of ketamine after mTOR inhibition have not been fully investigated. In the present study, we examined the behavioral and biochemical effects of ketamine in the prefrontal cortex (PFC), hippocampus, amygdala, and nucleus accumbens after inhibition of mTOR signaling in the PFC. Male adult Wistar rats received pharmacological mTOR inhibitor, rapamycin (0.2 nmol) or vehicle into the PFC and then a single dose of ketamine (15 mg/kg, i.p.). Immobility was assessed in forced swimming tests, and then oxidative stress parameters and inflammatory markers were evaluated in the brain and periphery. mTOR activation in the PFC was essential to ketamine's antidepressant-like effects. Ketamine increased lipid damage in the PFC, hippocampus, and amygdala. Protein carbonyl was elevated in the PFC, amygdala, and NAc after ketamine administration. Ketamine also increased nitrite/nitrate in the PFC, hippocampus, amygdala, and NAc. Myeloperoxidase activity increased in the hippocampus and NAc after ketamine administration. The activities of superoxide dismutase and catalase were reduced after ketamine administration in all brain areas studied. Inhibition of mTOR signaling pathways by rapamycin in the PFC was required to protect against oxidative stress by reducing damage and increasing antioxidant enzymes. Finally, the TNF-α level was increased in serum by ketamine; however, the rapamycin plus treatment group was not able to block this increase. Activation of mTOR in the PFC is involved in the antidepressant-like effects of ketamine; however, the inhibition of this pathway was able to protect certain brain areas against oxidative stress, without affecting inflammation parameters.


Subject(s)
Antioxidants/pharmacology , Encephalitis/prevention & control , Ketamine/pharmacology , Oxidative Stress/drug effects , Prefrontal Cortex/drug effects , Sirolimus/pharmacology , Amygdala/metabolism , Animals , Antidepressive Agents/pharmacology , Male , Prefrontal Cortex/metabolism , Rats, Wistar , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...