Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 8(10): e11048, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36281392

ABSTRACT

Bacterial Cellulose (BC) derived from local market or symbiotic culture of bacteria and yeast (SCOBY) was employed as the polymer matrix for hydroxyl multi-walled carbon nanotube (MWCNT-OH)-based electrochemical double-layer capacitor (EDLC). Chitosan (CS)-sodium iodide (NaI)-glycerol (Gly) electrolyte systems were used as the polymer electrolyte. CS-NaI-Gly electrolyte possesses conductivity, potential stability and ionic transference number of (1.20 ± 0.26) × 10-3 S cm-2, 2.5 V and 0.99, respectively. For the electrodes, MWCNT-OH was observed to be well dispersed in the matrix of BC which was obtained via FESEM analysis. The inclusion of MWCNT-OH reduced the crystallinity of the BC polymeric structure. From EIS measurement, it was verified that the presence of MWCNT-OH decreased the electron transfer resistance of BC-based electrodes. Cyclic voltammetry (CV) showed that the shape of the CV plots changed to a rectangular-like shape plot as more MWCNT were added, thus verifying the capacitive behavior. Various amount of MWCNT-OH was used in the fabrication of the EDLC where it was discovered that more MWCNT-OH leads to a better EDLC performance. The EDLC was tested for 5000 complete charge-discharge cycles. The optimum performance of this low voltage EDLC was obtained with 0.1 g MWCNT where the average specific capacitance was 8.80 F g-1. The maximum power and energy density of the fabricated EDLC were 300 W kg-1 and 1.6 W h kg-1, respectively.

2.
Polymers (Basel) ; 14(15)2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35956709

ABSTRACT

In this work, bacterial cellulose (BC)-based polymer derived from a symbiotic culture of bacteria and yeast (SCOBY) are optimized as both electrodes and electrolytes to fabricate a flexible and free-standing supercapacitor. BC is a multifunction and versatile polymer. Montmorillonite (MMT) and sodium bromide (NaBr) are used to improve mechanical strength and as the ionic source, respectively. From XRD analysis, it is found that the addition of MMT and NaBr has reduced the crystallinity of the electrolyte. Most interaction within the electrolyte happens in the region of the OH band, as verified using FTIR analysis. A maximum room temperature conductivity of (1.09 ± 0.02) × 10-3 S/cm is achieved with 30 wt.% NaBr. The highest conducting SCOBY-based electrolytes have a decompose voltage and ionic transference number of 1.48 V and 0.97, respectively. The multiwalled carbon nanotube is employed as the active material held by the fibrous network of BC. Cyclic voltammetry shows a rectangular shape CV plot with the absence of a redox peak. The supercapacitor is charged and discharged in a zig-zag-shaped Perspex plate for 1000 cycles with a decent performance.

3.
Nanomaterials (Basel) ; 12(13)2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35808113

ABSTRACT

Monitoring environmental hazards and pollution control is vital for the detection of harmful toxic gases from industrial activities and natural processes in the environment, such as nitrogen dioxide (NO2), ammonia (NH3), hydrogen (H2), hydrogen sulfide (H2S), carbon dioxide (CO2), and sulfur dioxide (SO2). This is to ensure the preservation of public health and promote workplace safety. Graphene and its derivatives, especially reduced graphene oxide (rGO), have been designated as ideal materials in gas-sensing devices as their electronic properties highly influence the potential to adsorb specified toxic gas molecules. Despite its exceptional sensitivity at low gas concentrations, the sensor selectivity of pristine graphene is relatively weak, which limits its utility in many practical gas sensor applications. In view of this, the hybridization technique through heterojunction configurations of rGO with metal oxides has been explored, which showed promising improvement and a synergistic effect on the gas-sensing capacity, particularly at room temperature sensitivity and selectivity, even at low concentrations of the target gas. The unique features of graphene as a preferential gas sensor material are first highlighted, followed by a brief discussion on the basic working mechanism, fabrication, and performance of hybridized rGO/metal oxide-based gas sensors for various toxic gases, including NO2, NH3, H2, H2S, CO2, and SO2. The challenges and prospects of the graphene/metal oxide-based based gas sensors are presented at the end of the review.

4.
Polymers (Basel) ; 14(3)2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35160377

ABSTRACT

Inspired by nature, cellulose extracted from plant wastes has been explored, due to its great potential as an alternative for synthetic fiber and filler that contributes to structural performance. The drive of this study was to extract, treat, and evaluate the characteristics of rice straw (RS) (Oryza sativa L.) cellulose as a biodegradable reinforcement to be utilized in polymer base materials. Two routes of extraction and treatment were performed via the pulping (Route 1) and chemo-mechanical methods (Route 2), in order to discover comparative characteristics of the synthesized cellulose fiber. Comprehensive characterization of RS cellulose was carried out to determine crystallinity, surface morphology, and chemical bonding properties, using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and Fourier transform infra-red (FTIR), respectively. The XRD test results showed that the crystallinity index (CI) of cellulose powder (CP) decreased after the surface modification treatment, Route 2, from 64.50 to 50.10% CI for modified cellulose powder (MCP), due to the surface alteration of cellulose structure. From Route 1, the crystallinity of the fibers decreased up to 33.5% (dissolve cellulose, DC) after the pulp went through the surface modification and dissolution processes, resulting from the transformation of cellulose phase into para-crystalline structure. FESEM micrographs displayed a significant reduction of raw RS diameter from 7.78 µm to 3.34 µm (treated by Route 1) and 1.06 µm (treated by Route 2). The extracted and treated cellulose via both routes, which was considerably dominated by cellulose II because of the high percentage of alkaline used, include the dissolve cellulose (DC). The dissolution process, using NMMO solvent, was performed on the pulp fiber produced by Route 1. The fiber change from cellulose I to cellulose II after undergoes the process. Thus, the dissolution process maintains cellulose II but turned the pulp to the cellulose solution. The acquired characteristics of cellulose from RS waste, extracted by the employed methods, have a considerably greater potential for further application in numerous industries. It was concluded that the great achievement of extracted RS is obtained the nanosized fibers after surface modification treatment, which is very useful for filler in structural composite applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...