Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Cells ; 13(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38786093

ABSTRACT

Vision starts in retinal photoreceptors when specialized proteins (opsins) sense photons via their covalently bonded vitamin A derivative 11cis retinaldehyde (11cis-RAL). The reaction of non-enzymatic aldehydes with amino groups lacks specificity, and the reaction products may trigger cell damage. However, the reduced synthesis of 11cis-RAL results in photoreceptor demise and suggests the need for careful control over 11cis-RAL handling by retinal cells. This perspective focuses on retinoid(s) synthesis, their control in the adult retina, and their role during retina development. It also explores the potential importance of 9cis vitamin A derivatives in regulating retinoid synthesis and their impact on photoreceptor development and survival. Additionally, recent advancements suggesting the pivotal nature of retinoid synthesis regulation for cone cell viability are discussed.


Subject(s)
Retinoids , Humans , Retinoids/metabolism , Animals , Retina/metabolism , Retinaldehyde/metabolism , Retinal Diseases/metabolism , Retinal Diseases/pathology , Vitamin A/metabolism
2.
Sci Rep ; 13(1): 6025, 2023 04 13.
Article in English | MEDLINE | ID: mdl-37055439

ABSTRACT

In proliferating multipotent retinal progenitors, transcription factors dynamics set the fate of postmitotic daughter cells, but postmitotic cell fate plasticity driven by extrinsic factors remains controversial. Transcriptome analysis reveals the concurrent expression by postmitotic rod precursors of genes critical for the Müller glia cell fate, which are rarely generated from terminally-dividing progenitors as a pair with rod precursors. By combining gene expression and functional characterisation in single cultured rod precursors, we identified a time-restricted window where increasing cell culture density switches off the expression of genes critical for Müller glial cells. Intriguingly, rod precursors in low cell culture density maintain the expression of genes of rod and glial cell fate and develop a mixed rod/Muller glial cells electrophysiological fingerprint, revealing rods derailment toward a hybrid rod-glial phenotype. The notion of cell culture density as an extrinsic factor critical for preventing rod-fated cells diversion toward a hybrid cell state may explain the occurrence of hybrid rod/MG cells in the adult retina and provide a strategy to improve engraftment yield in regenerative approaches to retinal degenerative disease by stabilising the fate of grafted rod precursors.


Subject(s)
Neuroglia , Retina , Retina/metabolism , Neuroglia/metabolism , Cell Differentiation/genetics , Transcription Factors/metabolism , Cell Culture Techniques
3.
Antioxidants (Basel) ; 12(3)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36978865

ABSTRACT

The retina is an oxidative stress-prone tissue due to high content of polyunsaturated lipids, exposure to visible light stimuli in the 400-480 nm range, and high oxygen availability provided by choroidal capillaries to support oxidative metabolism. Indeed, lipids' peroxidation and their conversion into reactive species promoting inflammation have been reported and connected to retinal degenerations. Here, we review recent evidence showing how retinal polyunsaturated lipids, in addition to oxidative stress and damage, may counteract the inflammatory response triggered by blue light-activated carotenoid derivatives, enabling long-term retina operation despite its prooxidant environment. These two aspects of retinal polyunsaturated lipids require tight control over their synthesis to avoid overcoming their protective actions by an increase in lipid peroxidation due to oxidative stress. We review emerging evidence on different transcriptional control mechanisms operating in retinal cells to modulate polyunsaturated lipid synthesis over the life span, from the immature to the ageing retina. Finally, we discuss the antioxidant role of food nutrients such as xanthophylls and carotenoids that have been shown to empower retinal cells' antioxidant responses and counteract the adverse impact of prooxidant stimuli on sight.

4.
J Enzyme Inhib Med Chem ; 38(1): 2162047, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36629452

ABSTRACT

hRPE65 is a fundamental enzyme of the retinoid visual cycle, and many missense mutations affecting its expression or function are associated with a wide range of diseases. Many hRPE65 missense mutations lack a clear pathogenicity classification or are labelled as VUS. In this context, we recently developed a protocol based on µs-long molecular dynamics simulations to study the potential pathogenic effect of hRPE65 missense mutations. In the present work, the structure-based protocol was integrated with a hRPE65-tailored consensus bioinformatics strategy, named ConPath, that showed high performance in predicting known pathogenic/benign hRPE65 missense mutations. The combined strategy was used to perform a multi-level evaluation of the potential pathogenicity of 13 different hRPE65 VUS, which were classified based on their likelihood of pathogenic effect. The obtained results provide information that may support the reclassification of these VUS and help clinicians evaluate the eligibility for gene therapy of patients diagnosed with such variants.


Subject(s)
Mutation, Missense , cis-trans-Isomerases , Humans , cis-trans-Isomerases/genetics , Computational Biology
5.
Int J Mol Sci ; 23(21)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36361866

ABSTRACT

Unidentified pathogenetic mechanisms and genetic and clinical heterogeneity represent critical factors hindering the development of treatments for inherited retinal dystrophies. Frameshift mutations in Cacna2d4, which codes for an accessory subunit of voltage-gated calcium channels (VGCC), cause cone-rod dystrophy RCD4 in patients, but the underlying mechanisms remain unknown. To define its pathogenetic mechanisms, we investigated the impact of a Cacna2d4 frameshift mutation on the electrophysiological profile and calcium handling of mouse rod photoreceptors by patch-clamp recordings and calcium imaging, respectively. In mutant (MUT) rods, the dysregulation of calcium handling extends beyond the reduction in calcium entry through VGCC and surprisingly involves internal calcium stores' depletion and upregulation of calcium entry via non-selective cationic channels (CSC). The similar dependence of CSC on basal calcium levels in WT and MUT rods suggests that the primary defect in MUT rods lies in defective calcium stores. Calcium stores' depletion, leading to upregulated calcium and sodium influx via CSC, represents a novel and, so far, unsuspected consequence of the Cacna2d4 mutation. Blocking CSC may provide a novel strategy to counteract the well-known pathogenetic mechanisms involved in rod demise, such as the reticulum stress response and calcium and sodium overload due to store depletion.


Subject(s)
Calcium , Cone-Rod Dystrophies , Mice , Animals , Calcium/metabolism , Calcium Channels/genetics , Calcium, Dietary , Disease Models, Animal , Retinal Rod Photoreceptor Cells/metabolism , Sodium , Retinal Cone Photoreceptor Cells/metabolism
6.
J Enzyme Inhib Med Chem ; 37(1): 1765-1772, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35726567

ABSTRACT

The human retinal pigment epithelium-specific 65-kDa protein (hRPE65) plays a crucial role within the retinoid visual cycle and several mutations affecting either its expression level or its enzymatic function are associated with inherited retinal diseases such as Retinitis Pigmentosa. The gene therapy product voretigene neparvovec (Luxturna) has been recently approved for treating hereditary retinal dystrophies; however, the treatment is currently accessible only to patients presenting confirmed biallelic mutations that severely impair hRPE65 function, and many reported hRPE65 missense mutations lack sufficient evidences for proving their pathogenicity. In this context, we developed a computational approach aimed at evaluating the potential pathogenic effect of hRPE65 missense variants located on the dimerisation domain of the protein. The protocol evaluates how mutations may affect folding and conformation stability of this protein region, potentially helping clinicians to evaluate the eligibility for gene therapy of patients diagnosed with this type of hRPE65 variant of uncertain significance.


Subject(s)
Mutation, Missense , Retinitis Pigmentosa , cis-trans-Isomerases , Humans , Molecular Dynamics Simulation , Retinitis Pigmentosa/genetics , cis-trans-Isomerases/genetics
7.
Cells ; 10(9)2021 09 20.
Article in English | MEDLINE | ID: mdl-34572137

ABSTRACT

Inherited retinal degenerations (IRD) affecting either photoreceptors or pigment epithelial cells cause progressive visual loss and severe disability, up to complete blindness. Retinal organoids (ROs) technologies opened up the development of human inducible pluripotent stem cells (hiPSC) for disease modeling and replacement therapies. However, hiPSC-derived ROs applications to IRD presently display limited maturation and functionality, with most photoreceptors lacking well-developed outer segments (OS) and light responsiveness comparable to their adult retinal counterparts. In this review, we address for the first time the microenvironment where OS mature, i.e., the subretinal space (SRS), and discuss SRS role in photoreceptors metabolic reprogramming required for OS generation. We also address bioengineering issues to improve culture systems proficiency to promote OS maturation in hiPSC-derived ROs. This issue is crucial, as satisfying the demanding metabolic needs of photoreceptors may unleash hiPSC-derived ROs full potential for disease modeling, drug development, and replacement therapies.


Subject(s)
Bioengineering/methods , Cell Differentiation , Induced Pluripotent Stem Cells/cytology , Organoids/cytology , Retinal Degeneration/therapy , Retinal Pigment Epithelium/cytology , Animals , Humans , Retinal Degeneration/pathology
8.
Eur J Med Chem ; 223: 113679, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34218085

ABSTRACT

Monoacylglycerol lipase (MAGL) is an enzyme belonging to the endocannabinoid system that mainly metabolizes the endocannabinoid 2-arachidonoylglycerol (2-AG). Numerous studies have shown the involvement of this enzyme in various pathological conditions such as pain, cancer progression, Parkinson's and Alzheimer's disease, thus encouraging the development of new MAGL modulators. In this context, we developed new diphenylsulfide-benzoylpiperidine derivatives characterized by a high enzymatic MAGL inhibition activity in the low nanomolar range, a reversible mechanism of action and selectivity. The three most active compounds (15-17) induced an appreciable inhibition of cell viability in a panel of nine cancer cell lines, with IC50 values ranging between 0.32 and 10 µM, thus highlighting their potential as novel anticancer agents.


Subject(s)
Enzyme Inhibitors/chemistry , Monoacylglycerol Lipases/antagonists & inhibitors , Piperidines/chemistry , Sulfides/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Binding Sites , Catalytic Domain , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Humans , Molecular Docking Simulation , Monoacylglycerol Lipases/genetics , Monoacylglycerol Lipases/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Structure-Activity Relationship
9.
Prog Biophys Mol Biol ; 166: 133-146, 2021 11.
Article in English | MEDLINE | ID: mdl-34197835

ABSTRACT

Most primary sensory neurons (PSNs) generate a slowly-activating inward current in response to membrane hyperpolarization (Ih) and express HCN1 along with additional isoforms coding for hyperpolarization-activated channels (HCN). Changes in HCN expression may affect the excitability and firing patterns of PSNs, but retinal and inner ear PSNs do not fire action potentials, suggesting HCN channel roles may extend beyond excitability and cell firing control. In patients taking Ih blockers, photopsia triggered in response to abrupt changes in luminance correlates with impaired visual signal processing via parallel rod and cone pathways. Furthermore, in a mouse model of inherited retinal degeneration, HCN blockers or Hcn1 genetic ablation may worsen photoreceptors' demise. PSN's use of HCN channels to adjust either their firing rate or process signals generated by sensory transduction in non-spiking PSNs indicates HCN1 channels as a versatile tool with a novel role in sensory processing beyond firing control.


Subject(s)
Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , Sensory Receptor Cells , Action Potentials , Animals , Humans , Mice , Potassium Channels
10.
Front Cell Neurosci ; 14: 569598, 2020.
Article in English | MEDLINE | ID: mdl-33390903

ABSTRACT

CLN1 disease (OMIM #256730) is an inherited neurological disorder of early childhood with epileptic seizures and premature death. It is associated with mutations in CLN1 coding for Palmitoyl-Protein Thioesterase 1 (PPT1), a lysosomal enzyme which affects the recycling and degradation of lipid-modified (S-acylated) proteins by removing palmitate residues. Transcriptomic evidence from a neuronal-like cellular model derived from differentiated SH-SY5Y cells disclosed the potential negative roles of CLN1 overexpression, affecting the elongation of neuronal processes and the expression of selected proteins of the synaptic region. Bioinformatic inquiries of transcriptomic data pinpointed a dysregulated expression of several genes coding for proteins related to voltage-gated ion channels, including subunits of calcium and potassium channels (VGCC and VGKC). In SH-SY5Y cells overexpressing CLN1 (SH-CLN1 cells), the resting potential and the membrane conductance in the range of voltages close to the resting potential were not affected. However, patch-clamp recordings indicated a reduction of Ba2+ currents through VGCC of SH-CLN1 cells; Ca2+ imaging revealed reduced Ca2+ influx in the same cellular setting. The results of the biochemical and morphological investigations of CACNA2D2/α2δ-2, an accessory subunit of VGCC, were in accordance with the downregulation of the corresponding gene and consistent with the hypothesis that a lower number of functional channels may reach the plasma membrane. The combined use of 4-AP and NS-1643, two drugs with opposing effects on Kv11 and Kv12 subfamilies of VGKC coded by the KCNH gene family, provides evidence for reduced functional Kv12 channels in SH-CLN1 cells, consistent with transcriptomic data indicating the downregulation of KCNH4. The lack of compelling evidence supporting the palmitoylation of many ion channels subunits investigated in this study stimulates inquiries about the role of PPT1 in the trafficking of channels to the plasma membrane. Altogether, these results indicate a reduction of functional voltage-gated ion channels in response to CLN1/PPT1 overexpression in differentiated SH-SY5Y cells and provide new insights into the altered neuronal excitability which may underlie the severe epileptic phenotype of CLN1 disease. It remains to be shown if remodeling of such functional channels on plasma membrane can occur as a downstream effect of CLN1 disease.

11.
Heliyon ; 5(9): e02417, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31687544

ABSTRACT

Numerous pieces of evidence support the expression by the mammalian retina of Hydroxyindole-O-methyltransferase (HIOMT, EC 2.1.1.4), the enzyme directly responsible for the biosynthesis of the pineal chronobiotic hormone melatonin (MLT). However, conflicting results obtained so far by enzyme-kinetic and immune-detection techniques still make HIOMT presence and relevance in the eye a matter of debate. This work aimed at evaluating unambiguously HIOMT activity in the mouse retina, a valuable model for studying the effects of MLT variations on ocular pathophysiology. Since laboratory mouse strains can bear genetic polymorphisms yielding defective enzymes of MLT biosynthesis, retinas and control pineal glands used in this study were obtained in a MLT-proficient crossing of A/J mice, the A/J/C57BL/10 strain. To improve the radiochemical reference assay, we tested different homogenization procedures coupled with HPLC detection. Concomitantly, we quantified MLT, and its precursor N-acetyl-serotonin (NAS) by HPLC coupled to electrochemical detection in retinas isolated from either light- or dark-adapted mice. Results showed that the standard radio-chemical assay was successful for pineal HIOMT only, whereas specific homogenization buffers and HPLC were required to detect retinal activity, presumably due to interfering methyl-transferases inhibited by NAS. Under present conditions, retinal HIOMT Vmax accounted for by ≈ 40 fmol/h/mg protein, 2.6-hundreds-fold lower than the pineal counterpart, displaying equivalent KMs (≈10 µM). Moreover, NAS and MLT rapidly decreased in light-exposed isolated retinas, corroborating light-sensitive in-situ MLT formation. Conclusively, we measured mouse retinal HIOMT kinetics under basal conditions, a useful result to elucidate the regulatory patterns, the possible impact on eye health, and therapeutic approaches related to this enzyme.

12.
Hum Mol Genet ; 27(5): 761-779, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29281027

ABSTRACT

P23H is the most common mutation in the RHODOPSIN (RHO) gene leading to a dominant form of retinitis pigmentosa (RP), a rod photoreceptor degeneration that invariably causes vision loss. Specific disruption of the disease P23H RHO mutant while preserving the wild-type (WT) functional allele would be an invaluable therapy for this disease. However, various technologies tested in the past failed to achieve effective changes and consequently therapeutic benefits. We validated a CRISPR/Cas9 strategy to specifically inactivate the P23H RHO mutant, while preserving the WT allele in vitro. We, then, translated this approach in vivo by delivering the CRISPR/Cas9 components in murine Rho+/P23H mutant retinae. Targeted retinae presented a high rate of cleavage in the P23H but not WT Rho allele. This gene manipulation was sufficient to slow photoreceptor degeneration and improve retinal functions. To improve the translational potential of our approach, we tested intravitreal delivery of this system by means of adeno-associated viruses (AAVs). To this purpose, the employment of the AAV9-PHP.B resulted the most effective in disrupting the P23H Rho mutant. Finally, this approach was translated successfully in human cells engineered with the homozygous P23H RHO gene mutation. Overall, this is a significant proof-of-concept that gene allele specific targeting by CRISPR/Cas9 technology is specific and efficient and represents an unprecedented tool for treating RP and more broadly dominant genetic human disorders affecting the eye, as well as other tissues.


Subject(s)
Gene Targeting/methods , Genetic Vectors , Retina/physiology , Retinal Degeneration/therapy , Rhodopsin/genetics , Alleles , Animals , CRISPR-Cas Systems , Electroporation/methods , Fibroblasts , Genetic Therapy/methods , HEK293 Cells , Humans , Mice, Inbred C57BL , Mice, Mutant Strains , Mice, Transgenic , Mutation , RNA, Guide, Kinetoplastida , Retina/pathology , Retinal Degeneration/genetics
13.
Front Cell Neurosci ; 9: 422, 2015.
Article in English | MEDLINE | ID: mdl-26557056

ABSTRACT

Photoreceptors rely upon highly specialized synapses to efficiently transmit signals to multiple postsynaptic targets. Calcium influx in the presynaptic terminal is mediated by voltage-gated calcium channels (VGCC). This event triggers neurotransmitter release, but also gates calcium-activated chloride channels (TMEM), which in turn regulate VGCC activity. In order to investigate the relationship between VGCC and TMEM channels, we analyzed the retina of wild type (WT) and Cacna2d4 mutant mice, in which the VGCC auxiliary α2δ4 subunit carries a nonsense mutation, disrupting the normal channel function. Synaptic terminals of mutant photoreceptors are disarranged and synaptic proteins as well as TMEM16A channels lose their characteristic localization. In parallel, calcium-activated chloride currents are impaired in rods, despite unaltered TMEM16A protein levels. Co-immunoprecipitation revealed the interaction between VGCC and TMEM16A channels in the retina. Heterologous expression of these channels in tsA-201 cells showed that TMEM16A associates with the CaV1.4 subunit, and the association persists upon expression of the mutant α2δ4 subunit. Collectively, our experiments show association between TMEM16A and the α1 subunit of VGCC. Close proximity of these channels allows optimal function of the photoreceptor synaptic terminal under physiological conditions, but also makes TMEM16A channels susceptible to changes occurring to calcium channels.

14.
Invest Ophthalmol Vis Sci ; 56(8): 4846-56, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26218913

ABSTRACT

PURPOSE: Mutations in CACNA2D4 exon 25 cause photoreceptor dysfunction in humans (c.2406C→A mutation) and mice (c.2451insC mutation). We investigated the feasibility of an exon-skipping therapeutic approach by evaluating the splicing patterns and functional role of targeted exons. METHODS: Splicing of the targeted α2δ4 (CACNA2D4) exons in presence and absence of the mutation was assessed by RT-PCR in vivo on mouse retinae and in vitro in HEK293T cells using splicing-reporter minigenes. Whole-cell patch-clamp recordings were performed to evaluate the impact of different Cacna2d4 variants on the biophysical properties of Cav1.4 L-type calcium channels (CACNA1F). RESULTS: Splicing analysis revealed the presence of a previously unknown splicing isoform of α2δ4 in the retina that truncates the gene open reading frame (ORF) in a similar way as the c.2451insC mutation. This isoform originates from alternative splicing of exon 25 (E25) with a new exon (E25b). Moreover, the c.2451insC mutation has an effect on splicing and increases the proportion of transcripts including E25b. Our electrophysiological analyses showed that only full-length α2δ4 was able to increase Cav1.4/ß3-mediated currents while all other α2δ4 variants did not mediate such effect. CONCLUSIONS: The designed exon-skipping strategy is not applicable because the resulting skipped α2δ4 are nonfunctional. α2δ4 E25b splicing variant is normally present in mouse retina and mimics the effect of c.2451insC mutation. Since this variant does not promote significant Cav1.4-mediated calcium current, it could possibly mediate a different function, unrelated to modulation of calcium channel properties at the photoreceptor terminals.


Subject(s)
Calcium Channels, L-Type/genetics , Mutation , RNA/genetics , Retina/metabolism , Retinal Dystrophies/genetics , Alternative Splicing , Animals , Blotting, Western , Calcium Channels, L-Type/metabolism , Disease Models, Animal , Exons , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Patch-Clamp Techniques , RNA Splicing , Retina/pathology , Retinal Dystrophies/metabolism , Retinal Dystrophies/pathology , Reverse Transcriptase Polymerase Chain Reaction
15.
PLoS One ; 7(3): e33338, 2012.
Article in English | MEDLINE | ID: mdl-22432014

ABSTRACT

In vitro generation of photoreceptors from stem cells is of great interest for the development of regenerative medicine approaches for patients affected by retinal degeneration and for high throughput drug screens for these diseases. In this study, we show unprecedented high percentages of rod-fated cells from retinal stem cells of the adult ciliary epithelium. Molecular characterization of rod-like cells demonstrates that they lose ciliary epithelial characteristics but acquire photoreceptor features. Rod maturation was evaluated at two levels: gene expression and electrophysiological functionality. Here we present a strong correlation between phototransduction protein expression and functionality of the cells in vitro. We demonstrate that in vitro generated rod-like cells express cGMP-gated channels that are gated by endogenous cGMP. We also identified voltage-gated channels necessary for rod maturation and viability. This level of analysis for the first time provides evidence that adult retinal stem cells can generate highly homogeneous rod-fated cells.


Subject(s)
Adult Stem Cells/cytology , Cilia/metabolism , Epithelial Cells/cytology , Retina/cytology , Retinal Rod Photoreceptor Cells/cytology , 1-Methyl-3-isobutylxanthine/pharmacology , Adult Stem Cells/drug effects , Adult Stem Cells/metabolism , Adult Stem Cells/radiation effects , Animals , CLC-2 Chloride Channels , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Differentiation/radiation effects , Chloride Channels/metabolism , Cyclic GMP/metabolism , Dependovirus/metabolism , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/radiation effects , Gene Expression Regulation/drug effects , Gene Expression Regulation/radiation effects , Green Fluorescent Proteins/metabolism , Ion Channel Gating/drug effects , Ion Channel Gating/radiation effects , Light , Light Signal Transduction/drug effects , Light Signal Transduction/radiation effects , Mice , Mice, Inbred C57BL , Retinal Rod Photoreceptor Cells/drug effects , Retinal Rod Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/radiation effects , Rhodopsin/metabolism , Spheroids, Cellular/cytology , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism , Spheroids, Cellular/radiation effects
16.
Stem Cells ; 29(2): 344-56, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21732491

ABSTRACT

There is growing evidence that Müller glia cells (MGCs) might act as regenerative elements in injured retinas of fishes and amniotes. However, their differentiation potential in humans is yet unknown. We isolated Müller glia from adult human retinas and propagated them in vitro revealing for the first time their ability to differentiate into rod photoreceptors. These results were also confirmed with mice retinas. Here, we describe conditions by which human MGCs adopt a rod photoreceptor commitment with a surprising efficiency as high as 54%. Functional characterization of Müller glia-derived photoreceptors by patch-clamp recordings revealed that their electrical properties are comparable to those of adult rods. Interestingly, our procedure allowed efficient derivation of MGC cultures starting from both injured and degenerating and postmortem human retinas. Human transplanted Müller glia-derived photoreceptors integrate and survive within immunodeficient mouse retinas. These data provide evidence that Müller glia retains an unpredicted plasticity and multipotent potential into adulthood, and it is therefore a promising source of novel therapeutic applications in retinal repair.


Subject(s)
Neuroglia/cytology , Neuroglia/physiology , Regeneration , Retina , Retinal Rod Photoreceptor Cells/physiology , Adult , Animals , Cell Differentiation/physiology , Cell- and Tissue-Based Therapy/methods , Cells, Cultured , Electrophysiology , Gene Expression Profiling , Gliosis , Humans , Mice , Patch-Clamp Techniques , Retina/cytology , Retina/injuries , Retina/transplantation
17.
Diabetes Technol Ther ; 12(6): 435-46, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20470228

ABSTRACT

BACKGROUND: Pancreatic islet transplantation is a promising cell-based therapy for type 1 diabetes (insulin-dependent diabetes mellitus), a disease triggered by the immune response against autoantigens of beta-cells. However, the recurrence of immune response after transplantation and the diabetogenic and growth-stunting side effects of immunosuppressants are major challenges to the application of islet transplantation. Mesenchymal stem cells (MSCs) have recently been reported to modulate the immune response in allogeneic transplantation. METHODS: The ability of MSCs, either syngeneic or allogeneic to recipients, to prevent acute rejection and improve glycemic control was investigated in rats with diabetes given a marginal mass of pancreatic islets through the portal vein. RESULTS: Reduced glucose levels and low-grade rejections were observed up to 15 days after transplantation upon triple-dose administration of MSCs, indicating that MSCs prolong graft function by preventing acute rejection. The efficacy of MSCs was associated with a reduction of pro-inflammatory cytokines and was independent of the administration route. Efficacy was similar for MSCs whether syngeneic or allogeneic to recipients and comparable to that of immunosuppressive therapy. CONCLUSIONS: The results show that MSCs modulate the immune response through a down-regulation of pro-inflammatory cytokines, suggesting that MSCs may prevent acute rejection and improve graft function in portal vein pancreatic islet transplantation.


Subject(s)
Diabetes Mellitus, Experimental/therapy , Graft Rejection/prevention & control , Islets of Langerhans Transplantation/methods , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/immunology , Analysis of Variance , Animals , Cells, Cultured , Graft Rejection/immunology , Immunohistochemistry , Immunosuppression Therapy , Insulin-Secreting Cells/immunology , Islets of Langerhans/immunology , Islets of Langerhans Transplantation/immunology , Male , Rats , Rats, Inbred Lew , Rats, Sprague-Dawley
18.
Invest Ophthalmol Vis Sci ; 51(2): 1016-23, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19741244

ABSTRACT

PURPOSE: To elucidate short- and long-term effects of ivabradine, an inhibitor of the hyperpolarization-activated current (I(f)) recently approved for treatment of stable angina, on retinal function and integrity. As careful ivabradine administration is recommended for patients with retinitis pigmentosa, an additional objective was to test the consequences of repeated ivabradine delivery on retinal integrity in the rd10 mouse, an animal model of the human degenerative disease. METHODS: The electroretinogram (ERG) was recorded in intact anesthetized animals in response to flashes or time-varied sinusoidal light stimuli of different frequency. Retinal integrity and hyperpolarization-activated cyclic nucleotide-gated (HCN) channel distribution were assessed by immunocytochemistry, confocal microscopy, and Western blot analysis. RESULTS: Neither a- nor b-waves of the flash-ERG were significantly affected by ivabradine administration. Conversely, reversible changes in the response to sinusoidal stimuli were observed during both acute and continued treatment. HCN inhibition enhanced the gain of frequency-response curves (FRCs) at the lowest stimulus frequencies and reduced it in the 1- to 7-Hz range. These effects were dose dependent and reverted to normal 1 week after discontinuation of ivabradine. Retinal morphology and distribution of HCN were preserved and no signs of retinal damage were observed in healthy animals. HCN inhibition in dystrophic mice had no effect on either extent or progression of retinal degeneration. CONCLUSIONS: The results are consistent with the hypothesis that the visual symptoms reported by patients during prolonged treatment with ivabradine are due only to a reversible pharmacologic effect.


Subject(s)
Benzazepines/administration & dosage , Cyclic Nucleotide-Gated Cation Channels/antagonists & inhibitors , Retina/physiopathology , Retinitis Pigmentosa/physiopathology , Actins/metabolism , Animals , Apoptosis , Blood Pressure/drug effects , Blotting, Western , Cyclic Nucleotide-Gated Cation Channels/metabolism , Disease Models, Animal , Dose-Response Relationship, Drug , Electroretinography , Fluorescent Antibody Technique, Indirect , Glial Fibrillary Acidic Protein/metabolism , Heart Rate/drug effects , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , In Situ Nick-End Labeling , Infusion Pumps , Infusions, Intravenous , Ivabradine , Mice , Mice, Mutant Strains , Microscopy, Confocal , Opsins/metabolism , Photic Stimulation , Potassium Channels/metabolism , Rats , Rats, Long-Evans , Retina/metabolism , Retinitis Pigmentosa/metabolism
19.
Stem Cells ; 27(9): 2146-52, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19591225

ABSTRACT

Driving specific differentiation pathways in multipotent stem cells is a main goal of cell therapy. Here we exploited the differentiating potential of Xenopus animal cap embryonic stem (ACES) cells to investigate the factors necessary to drive multipotent stem cells toward retinal fates. ACES cells are multipotent, and can be diverged from their default ectodermal fate to give rise to cell types from all three germ layers. We found that a single secreted molecule, Noggin, is sufficient to elicit retinal fates in ACES cells. Reverse-transcription polymerase chain reaction, immunohistochemistry, and in situ hybridization experiments showed that high doses of Noggin are able to support the expression of terminal differentiation markers of the neural retina in ACES cells in vitro. Following in vivo transplantation, ACES cells expressing high Noggin doses form eyes, both in the presumptive eye field region and in ectopic posterior locations. The eyes originating from the transplants in the eye field region are functionally equivalent to normal eyes, as seen by electrophysiology and c-fos expression in response to light. Our data show that in Xenopus embryos, proper doses of a single molecule, Noggin, can drive ACES cells toward retinal cell differentiation without additional cues. This makes Xenopus ACES cells a suitable model system to direct differentiation of stem cells toward retinal fates and encourages further studies on the role of Noggin in the retinal differentiation of mammalian stem cells.


Subject(s)
Carrier Proteins/metabolism , Cell Differentiation , Embryonic Stem Cells/cytology , Retina/cytology , Xenopus Proteins/metabolism , Xenopus laevis/embryology , Animals , Carrier Proteins/genetics , Gene Expression Regulation, Developmental/genetics , Immunohistochemistry , In Situ Hybridization , Reverse Transcriptase Polymerase Chain Reaction , Xenopus laevis/metabolism
20.
Invest Ophthalmol Vis Sci ; 50(4): 1948-55, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19060291

ABSTRACT

PURPOSE: To evaluate in mammalian rod photoreceptors the selectivity for hyperpolarization-activated cyclic nucleotide-gated (Hcn1, coded by Hcn1) over potassium-selective (Kir 2.4, coded by Kcnj14) channels of ivabradine, a selective inhibitor of the cardiac "funny" current (I(f)). METHODS: Rods were isolated from the mouse retina and voltage clamped by the perforated-patch technique. The hyperpolarization-activated current (I(h)) was blocked by ivabradine during repetitive stimulation with activating/deactivating voltage steps from -80 to -30 mV, from a holding of -35 mV. RESULTS: Full inhibition was observed at a high concentration of ivabradine (30 microM), with intermediate effects at 3 and 0.3 microM. Steady state activation and activation kinetics of the ivabradine- and CsCl-blocked currents were similar, consistent with the block by ivabradine of ion permeation through Hcn1 channels. Hcn1 blockade was also consistent with the lack of current reactivation during long steps at -110 mV. At doses that fully block I(h), ivabradine does not affect the inward rectifier current through potassium-selective Kir 2.4 channels or the outward currents evoked by stepping up from -80 to 50 mV. CONCLUSIONS: In mammalian rods, ivabradine is a selective inhibitor of Hcn1 channels. Phosphenes perception in response to abrupt changes in luminance, which has been transiently reported in a dose-dependent way by few patients treated with ivabradine, was consistent with Hcn1 inhibition in rods.


Subject(s)
Benzazepines/pharmacology , Cyclic Nucleotide-Gated Cation Channels/antagonists & inhibitors , Retinal Rod Photoreceptor Cells/drug effects , Retinal Rod Photoreceptor Cells/physiology , Action Potentials , Animals , Cesium/pharmacology , Chlorides/pharmacology , Dose-Response Relationship, Drug , Electrophysiology , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , Ivabradine , Male , Mice , Mice, Inbred C57BL , Patch-Clamp Techniques , Potassium Channels , Potassium Channels, Inwardly Rectifying/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...