ABSTRACT
The steady rise in the cancer burden and grim statistics set a vital need for new therapeutic solutions. Given their high efficiency, metallodrugs are quite appealing in cancer chemotherapy. This work examined the anticancer activity of an anti-trypanosomal ruthenium-based compound bearing the 5-nitrofuryl pharmacophore, [RuII(dmso)2(5-nitro-2-furaldehyde semicarbazone)] (abbreviated as RuNTF; dmso is the dimethyl sulfoxide ligand). The cytotoxicity of RuNTF was evaluated in vitro against ovarian adenocarcinoma, hormone-dependent breast adenocarcinoma, prostate carcinoma (grade IV) and V79 lung fibroblasts human cells. The activity of RuNTF was similar to the benchmark metallodrug cisplatin for the breast line and inactive against the prostate line and lung fibroblasts. Given the known role of serum protein binding in drug bioavailability and the distribution via blood plasma, this study assessed the interaction of RuNTF with human serum albumin (HSA) by circular dichroism (CD) and fluorescence spectroscopy. The fluorescence emission quenching from the HSA-Trp214 residue and the lifetime data upon RuNTF binding evidenced the formation of a 1:1 {RuNTF-albumin} adduct with log Ksv = (4.58 ± 0.01) and log KB = (4.55 ± 0.01). This is supported by CD data with an induced CD broad band observed at ~450 nm even after short incubation times. Importantly, the binding to either HSA or human apo-transferrin is beneficial to the cytotoxicity of the complex towards human cancer cells by enhancing the cytotoxic activity of RuNTF.
Subject(s)
Blood Proteins/chemistry , Coordination Complexes/chemistry , Ruthenium/chemistry , Semicarbazones/chemistry , Algorithms , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Blood Proteins/metabolism , Circular Dichroism , Drug Interactions , Humans , Models, Molecular , Models, Theoretical , Molecular Structure , Protein Binding , Ruthenium/metabolism , Serum Albumin, Human/chemistry , Serum Albumin, Human/metabolismABSTRACT
To face the high costs of developing new drugs, researchers in both industry and academy are looking for ways to repurpose old drugs for new uses. In this sense, bisphosphonates that are clinically used for bone diseases have been studied as agents against Trypanosoma cruzi, causative parasite of Chagas disease. In this work, the development of first row transition metal complexes (M = Co2+, Mn2+, Ni2+) with the bisphosphonate ibandronate (iba, H4iba representing the neutral form) is presented. The in-solution behavior of the systems containing iba and the selected 3d metal ions was studied by potentiometry. Mononuclear complexes [M(Hxiba)](2-x)- (x = 0-3) and [M(Hiba)2]4- together with the formation of the neutral polynuclear species [M2iba] and [M3(Hiba)2] were detected for all studied systems. In the solid state, complexes of the formula [M3(Hiba)2(H2O)4]·6H2O were obtained and characterized. All obtained complexes, forming [M(Hiba)]- species under the conditions of the biological studies, were more active against the amastigote form of T. cruzi than the free iba, showing no toxicity in mammalian Vero cells. In addition, the same complexes were selective inhibitors of the parasitic farnesyl diphosphate synthase (FPPS) enzyme showing poor inhibition of the human one. However, the increase of the anti-T. cruzi activity upon coordination could not be explained neither through the inhibition of TcFPPS nor through the inhibition of TcSPPS (T. cruzi solanesyl-diphosphate synthase). The ability of the obtained metal complexes of catalyzing the generation of free radical species in the parasite could explain the observed anti-T. cruzi activity.
Subject(s)
Antiprotozoal Agents/chemistry , Antiprotozoal Agents/pharmacology , Ibandronic Acid/chemistry , Ibandronic Acid/pharmacology , Metals/chemistry , Alkyl and Aryl Transferases/antagonists & inhibitors , Animals , Chlorocebus aethiops , Geranyltranstransferase/antagonists & inhibitors , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/enzymology , Vero CellsABSTRACT
In the search for new therapeutic tools against tuberculosis and to further address the therapeutic potential of pyridine-2-thiol 1-oxide (Hmpo) metal complexes, two new octahedral [M(III)(mpo)3] complexes, with M = Ga or Bi, were synthesized and characterized in the solid state and in solution. Attempts to crystallize [Ga(III)(mpo)3] in CH2Cl2 led to single crystals of the reaction product [GaCl(mpo)2], where the gallium(III) ion is in a square basis pyramidal environment, trans-coordinated at the basis to two pyridine-2-thiolato 1-oxide anions acting as bidentate ligands through their oxygen and sulfur atoms. The biological activity of the new [M(III)(mpo)3] complexes together with that of the previously reported Fe(III) analogous compound and the pyridine-2-thiol 1-oxide sodium salt (Na mpo) was evaluated on Mycobacterium tuberculosis. The compounds showed excellent activity, both in the standard strain H37Rv ATCC 27294 (pan-susceptible) and in five clinical isolates that are resistant to the standard first-line anti-tuberculosis drugs isoniazid and rifampicin. These pyridine-2-thiol 1-oxide derivatives are promising compounds for the treatment of resistant tuberculosis.
Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Mycobacterium tuberculosis/drug effects , Animals , Anti-Bacterial Agents/toxicity , Bismuth/chemistry , Chlorocebus aethiops , Coordination Complexes/toxicity , Crystallography, X-Ray , Gallium/chemistry , Iron/chemistry , Microbial Sensitivity Tests , Vero CellsABSTRACT
In the search for new metal-based drugs against diseases produced by trypanosomatid parasites, four organoruthenium(II) compounds [Ru2(p-cymene)2(L)2]X2, where L are bioactive 5-nitrofuryl-containing thiosemicarbazones and X = Cl or PF6, had been previously obtained. These compounds had shown activity on Trypanosoma brucei, the etiological agent of African trypanosomiasis. Because of genomic similarities between trypanosomatides, these ruthenium compounds were evaluated, in the current work, on Trypanosoma cruzi, the parasite responsible of American trypanosomiasis (Chagas disease). Two of them showed significant in vitro growth inhibition activity against the infective trypomastigote form of T. cruzi (Dm28c clone, IC50 = 11.69 and 59.42 µM for [Ru2(p-cymene)2(L4)2]Cl2 and [Ru2(p-cymene)2(L1)2]Cl2, respectively, where HL4 = 5-nitrofuryl-N-phenylthiosemicarbazone and HL1 = 5-nitrofurylthiosemicarbazone), showing fairly good selectivities toward trypanosomes with respect to mammalian cells (J774 murine macrophages). Moreover, [Ru2(p-cymene)2(L2)2]Cl2, where HL2 = 5-nitrofuryl-N-methylthiosemicarbazone, was synthesized in order to evaluate the effect of improved solubility on biological behavior. This new chloride salt showed higher activity against T. cruzi than that of the previously synthesized hexafluorophosphate one (Dm28c clone, IC50 = 14.30 µM for the former and 231.3 µM for the latter). In addition, the mode of antitrypanosomal action of the organoruthenium compounds was investigated. The complexes were not only able to generate toxic free radicals through bioreduction but they also interacted with two further potential parasite targets: DNA and cruzipain, a cysteine protease which plays a fundamental role in the biological cycle of these parasites. The results suggest a "multi-target" mechanism of trypanosomicidal action for the obtained complexes.
Subject(s)
Organic Chemicals/pharmacology , Ruthenium Compounds/pharmacology , Thiosemicarbazones/pharmacology , Trypanocidal Agents/pharmacology , Animals , Crystallography, X-Ray , Microscopy, Atomic Force , Organic Chemicals/chemistry , Ruthenium Compounds/chemistry , Thiosemicarbazones/chemistry , Trypanocidal Agents/chemistryABSTRACT
Four complexes combining the {Ru(p-cym)} moiety (p-cym = para-cymene) with thiosemicarbazone (TSC) ligands containing the 5-nitrofuryl pharmacophore were investigated in vitro for their properties as prospective anti-tumour agents. The compounds are dimeric structures of general formula [Ru2(p-cym)2(L)2]X2 where X = Cl(-), PF6(-) and L = deprotonated 5-nitrofuraldehyde TSC (L1), and the N-methyl (L2), N-ethyl (L3) and N-phenyl (L4) derivatives. The precursor [RuCl2(p-cym)]2, all TSC ligands L1-L4and their corresponding complexes 1-4 were screened in vitro for their cytotoxicity against a range of human cancer cell lines (HL-60 acute promyelocytic leukemia, A2780 ovarian adenocarcinoma, MCF7 breast adenocarcinoma and PC3 grade IV prostate carcinoma). While the precursor complex was found to be inactive and L4 exhibited moderate activity only in the MCF7 cell line, the coordination of L4 to the {Ru(p-cym)} moiety remarkably enhanced the activity of the whole complex. In fact, complex 4 [Ru2(p-cym)2(L4)2]Cl2 was found to be the most active agent of the whole series, and was studied further (as well as complex 1 for comparison). Concerning the mode of action, the mechanism of cell death for both 1 and 4 seemed to be related to apoptotic processes, and they strongly interacted with tubulin (involved in the cell cycle) and with integrin (involved in the cytoskeleton formation). As an approach to their pharmacokinetics, the interaction of 1 and 4 with human serum albumin (HSA) was assessed. A quantitative model for the binding of 4 to HSA is proposed from Circular Dichroism data, and validated by fluorescence results. Models of Förster resonance energy transfer and fluorescence quenching afforded the distance of 4 to the lone Trp214 residue. Importantly, HSA binding enhanced the cytotoxicity of 4 and correlated well with the HSA binding data. Our results consistently indicate that [Ru2(p-cymene)2(L4)2]Cl2 is quite promising as a prospective metallodrug for cancer chemotherapy.
Subject(s)
Antineoplastic Agents/chemistry , Coordination Complexes/metabolism , Ruthenium/chemistry , Serum Albumin/metabolism , Thiosemicarbazones/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/toxicity , Apoptosis/drug effects , Cell Line, Tumor , Circular Dichroism , Coordination Complexes/chemistry , Coordination Complexes/toxicity , Dimerization , HL-60 Cells , Humans , MCF-7 Cells , Protein Binding , Serum Albumin/chemistryABSTRACT
In the search for a pharmacological answer to treat Chagas disease, eight metal complexes with two bioactive bisphosphonates, alendronate (Ale) and pamidronate (Pam), were described. Complexes of the formula [M(2)(II)(Ale)(4)(H(2)O)(2)]·2H(2)O, with M = Cu, Co, Mn, Ni, and ([CuPam]·H(2)O)(n) as well as [M(II)(Pam)(2)(H(2)O)(2)]·3H(2)O, with M = Co, Mn and Ni, were synthesized and fully characterized. Crystal structure of [Cu(2)(II)(Ale)(4)(H(2)O)(2)]·2H(2)O, [Co(II)(Pam)(2)(H(2)O)(2)] and [Ni(II)(Pam)(2)(H(2)O)(2)] were solved by X-ray single crystal diffraction methods and the structures of [M(2)(II)(Ale)(4)(H(2)O)(2)]·2H(2)O complexes M = Co, Mn and Ni were studied by X-ray powder diffraction methods. All obtained complexes were active against the amastigote form of Trypanosoma cruzi (T. cruzi), etiological agent of Chagas disease. Most of them were more active than the corresponding free ligands showing no toxicity for mammalian cells. The main mechanism of the antiparasitic action of bisphosphonates, inhibition of parasitic farnesyl diphosphate synthase (TcFPPS), remains in the obtained metal complexes and an increase in the inhibiting enzyme levels was observed upon coordination. Observed enzymatic inhibition was selective for TcFPPS as the metal complexes showed no or little inhibition of human FPPS. Additionally, metal complexation might improve the bioavailability of the complexes through the hindrance of the phosphonate group's ionization at physiological pH and, eventually, through the ability of plasma proteins to work as complex transporters.
Subject(s)
Diphosphonates/chemistry , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Geranyltranstransferase/antagonists & inhibitors , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Trypanosoma cruzi/enzymology , Animals , Cell Proliferation/drug effects , Chlorocebus aethiops , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/metabolism , Humans , Inhibitory Concentration 50 , Organometallic Compounds/chemical synthesis , Organometallic Compounds/metabolism , Serum Albumin, Bovine/metabolism , Trypanosoma cruzi/cytology , Trypanosoma cruzi/drug effects , Vero CellsABSTRACT
In the search for new therapeutic tools against neglected diseases produced by trypanosomatid parasites, and particularly against African Trypanosomiasis, whose etiological agent is Trypanosoma brucei, organoruthenium compounds with bioactive nitrofuran containing thiosemicarbazones (L) as co-ligands were obtained. Four ruthenium(II) complexes with the formula [Ru(2)(p-cymene)(2)(L)(2)]X(2), where X = Cl or PF(6), were synthesized and the crystal structures of two of them were solved by X-ray diffraction methods. Two of the complexes show significant in vitro growth inhibition activity against Trypanosoma brucei brucei and are highly selective towards trypanosomal cells with respect to mammalian cells (J774 murine macrophages). These promising results make the title organoruthenium compounds good lead candidates for further developments towards potential antitrypanosomal organometallic drugs.
Subject(s)
Organoselenium Compounds/chemistry , Organoselenium Compounds/pharmacology , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacology , Trypanosoma brucei brucei/drug effects , Animals , Cattle , Cell Line , Crystallography, X-Ray , DNA/metabolism , Humans , Ligands , Macrophages/drug effects , Mice , Models, Molecular , Trypanosomiasis, African/drug therapyABSTRACT
In the search for new metal-based drugs for the treatment of Chagas disease, the most widespread Latin American parasitic disease, novel complexes of the bioactive ligand risedronate (Ris, (1-hydroxy-1-phosphono-2-pyridin-3-yl-ethyl)phosphonate), [M(II)(Ris)(2)]·4H(2)O, where MâCu, Co, Mn and Ni, and [Ni(II)(Ris)(2)(H(2)O)(2)]·H(2)O were synthesized and characterized by using analytical measurements, thermogravimetric analyses, cyclic voltammetry and infrared and Raman spectroscopies. Crystal structures of [Cu(II)(Ris)(2)]·4H(2)O and [Ni(II)(Ris)(2)(H(2)O)(2)]·H(2)O were solved by single crystal X-ray diffraction methods. The complexes, as well as the free ligand, were evaluated in vitro against epimastigotes and intracellular amastigotes of the parasite Trypanosoma cruzi, causative agent of Chagas disease. Results demonstrated that the coordination of risedronate to different metal ions improved the antiproliferative effect against T. cruzi, exhibiting growth inhibition values against the intracellular amastigotes ranging the low micromolar levels. In addition, this strong activity could be related to high inhibition of farnesyl diphosphate synthase enzyme. On the other hand, protein interaction studies showed that all the complexes strongly interact with albumin thus providing a suitable means of transporting them to tissues in vivo.
Subject(s)
Chagas Disease/drug therapy , Coordination Complexes/chemistry , Coordination Complexes/therapeutic use , Etidronic Acid/analogs & derivatives , Trypanosoma cruzi/drug effects , Animals , Etidronic Acid/chemistry , Etidronic Acid/therapeutic use , Geranyltranstransferase/metabolism , Models, Chemical , Risedronic Acid , Trypanosoma cruzi/metabolism , Trypanosoma cruzi/pathogenicity , X-Ray DiffractionABSTRACT
In the search of new therapeutic tools for the treatment of American Trypanosomiasis, the largest parasitic disease burden in the American continent, three series of novel ruthenium complexes of the formula [RuCl(2)(HL)(2)], [RuCl(3)(dmso)(HL)] and [RuCl(PPh(3))(L)(2)] with bioactive 5-nitrofuryl containing thiosemicarbazones as ligands (HL neutral, L monoanionic) were synthesized and characterized. Their in vitro growth inhibition activity against Trypanosoma cruzi and the effect of co-ligands in related physicochemical properties i.e. nitro moiety redox potential, lipophilicity and free radical scavenger capacity were evaluated. Results show that although a loss of activity was observed as a consequence of ruthenium complexation, lipophilicity and free radical scavenger capacity of the obtained complexes could be correlated to their trypanocidal effect.