Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-29655816

ABSTRACT

Reproduction is an essential process for life and is regulated by complex hormone networks and environmental factors. To date, little is known about the contribution of epigenetic mechanisms to the regulation of reproduction, particularly in lower vertebrates. We used the zebrafish (Danio rerio) model to investigate the sex-specific transcription and DNA methylation profiles for genes involved in the regulation of reproduction and in epigenetic signalling in the livers and gonads. We found evidence for associations between DNA promotor methylation and transcription for esr1 (gonads and female livers), amh (gonads) and dnmt1 (livers). In the liver, esr1 was shown to be significantly over-expressed in females compared to males, and its promoter was significantly hypo-methylated in females compared to males. In the gonads, genes involved in epigenetic processes including dnmt1, dnmt3 and hdac1 were over-expressed in the ovary compared to the testis. In addition, dnmt1 and dnmt3 transcription in the testis was found to be strongly correlated with global DNA methylation. These data provide evidence of the sex-specific epigenetic regulation and transcription of genes involved in reproduction and epigenetic signalling in a commonly used vertebrate model.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Liver/metabolism , Ovary/metabolism , Sex Factors , Testis/metabolism , Transcription, Genetic , Zebrafish Proteins/genetics , Zebrafish/genetics , Zebrafish/physiology , Animals , Base Sequence , DNA (Cytosine-5-)-Methyltransferase 1/genetics , Estrogen Receptor alpha/genetics , Female , Male , Promoter Regions, Genetic , Receptors, Peptide/genetics , Receptors, Transforming Growth Factor beta/genetics , Reproduction
2.
Transl Psychiatry ; 7(1): e989, 2017 01 03.
Article in English | MEDLINE | ID: mdl-28045465

ABSTRACT

Major depressive disorder (MDD) represents a major social and economic health issue and constitutes a major risk factor for suicide. The molecular pathology of suicidal depression remains poorly understood, although it has been hypothesised that regulatory genomic processes are involved in the pathology of both MDD and suicidality. In this study, genome-wide patterns of DNA methylation were assessed in depressed suicide completers (n=20) and compared with non-psychiatric, sudden-death controls (n=20) using tissue from two cortical brain regions (Brodmann Area 11 (BA11) and Brodmann Area 25 (BA25)). Analyses focused on identifying differentially methylated regions (DMRs) associated with suicidal depression and epigenetic variation were explored in the context of polygenic risk scores for major depression and suicide. Weighted gene co-methylation network analysis was used to identify modules of co-methylated loci associated with depressed suicide completers and polygenic burden for MDD and suicide attempt. We identified a DMR upstream of the PSORS1C3 gene, subsequently validated using bisulfite pyrosequencing and replicated in a second set of suicide samples, which is characterised by significant hypomethylation in both cortical brain regions in MDD suicide cases. We also identified discrete modules of co-methylated loci associated with polygenic risk burden for suicide attempt, but not major depression. Suicide-associated co-methylation modules were enriched among gene networks implicating biological processes relevant to depression and suicidality, including nervous system development and mitochondria function. Our data suggest that there are coordinated changes in DNA methylation associated with suicide that may offer novel insights into the molecular pathology associated with depressed suicide completers.


Subject(s)
Cerebral Cortex/metabolism , DNA Methylation , Depressive Disorder, Major/genetics , Proteins/genetics , Suicide , Case-Control Studies , Female , Humans , Male , RNA, Long Noncoding , Risk Factors
3.
Transl Psychiatry ; 6(6): e830, 2016 06 07.
Article in English | MEDLINE | ID: mdl-27271856

ABSTRACT

Exposure to adverse rearing environments including institutional deprivation and severe childhood abuse is associated with an increased risk for mental and physical health problems across the lifespan. Although the mechanisms mediating these effects are not known, recent work in rodent models suggests that epigenetic processes may be involved. We studied the impact of severe early-life adversity on epigenetic variation in a sample of adolescents adopted from the severely depriving orphanages of the Romanian communist era in the 1980s. We quantified buccal cell DNA methylation at ~400 000 sites across the genome in Romanian adoptees exposed to either extended (6-43 months; n=16) or limited duration (<6 months; n=17) of severe early-life deprivation, in addition to a matched sample of UK adoptees (n=16) not exposed to severe deprivation. Although no probe-wise differences remained significant after controlling for the number of probes tested, we identified an exposure-associated differentially methylated region (DMR) spanning nine sequential CpG sites in the promoter-regulatory region of the cytochrome P450 2E1 gene (CYP2E1) on chromosome 10 (corrected P=2.98 × 10(-5)). Elevated DNA methylation across this region was also associated with deprivation-related clinical markers of impaired social cognition. Our data suggest that environmental insults of sufficient biological impact during early development are associated with long-lasting epigenetic changes, potentially reflecting a biological mechanism linking the effects of early-life adversity to cognitive and neurobiological phenotypes.


Subject(s)
Child Abuse/psychology , Child, Orphaned , Cytochrome P-450 CYP2E1/genetics , DNA Methylation/genetics , Psychosocial Deprivation , Transcription Initiation Site , Adolescent , Adoption , Child , Child, Preschool , Cognition Disorders/genetics , Cognition Disorders/psychology , Cohort Studies , Emotional Intelligence/genetics , Epigenesis, Genetic/genetics , Female , Humans , Infant , Male , Romania , Social Adjustment , Time Factors
4.
Epigenetics ; 11(7): 526-38, 2016 07 02.
Article in English | MEDLINE | ID: mdl-27120497

ABSTRACT

Bisphenol A (BPA) is a commercially important high production chemical widely used in epoxy resins and polycarbonate plastics, and is ubiquitous in the environment. Previous studies demonstrated that BPA activates estrogenic signaling pathways associated with adverse effects on reproduction in vertebrates and that exposure can induce epigenetic changes. We aimed to investigate the reproductive effects of BPA in a fish model and to document its mechanisms of toxicity. We exposed breeding groups of zebrafish (Danio rerio) to 0.01, 0.1, and 1 mg/L BPA for 15 d. We observed a significant increase in egg production, together with a reduced rate of fertilization in fish exposed to 1 mg/L BPA, associated with significant alterations in the transcription of genes involved in reproductive function and epigenetic processes in both liver and gonad tissue at concentrations representing hotspots of environmental contamination (0.1 mg/L) and above. Of note, we observed reduced expression of DNA methyltransferase 1 (dnmt1) at environmentally relevant concentrations of BPA, along with a significant reduction in global DNA methylation, in testes and ovaries following exposure to 1 mg/L BPA. Our findings demonstrate that BPA disrupts reproductive processes in zebrafish, likely via estrogenic mechanisms, and that environmentally relevant concentrations of BPA are associated with altered transcription of key enzymes involved in DNA methylation maintenance. These findings provide evidence of the mechanisms of action of BPA in a model vertebrate and advocate for its reduction in the environment.


Subject(s)
Air Pollutants, Occupational/toxicity , Benzhydryl Compounds/toxicity , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methylation/drug effects , Estrogens, Non-Steroidal/toxicity , Fertilization/drug effects , Phenols/toxicity , Zebrafish Proteins/genetics , Animals , DNA (Cytosine-5-)-Methyltransferase 1 , DNA (Cytosine-5-)-Methyltransferases/metabolism , Epigenesis, Genetic/drug effects , Genome , Gonads/drug effects , Liver/drug effects , Zebrafish/genetics , Zebrafish Proteins/metabolism
5.
Transl Psychiatry ; 4: e434, 2014 Sep 02.
Article in English | MEDLINE | ID: mdl-25180573

ABSTRACT

Epigenetic processes such as DNA methylation have been implicated in the pathophysiology of neurodevelopmental disorders including schizophrenia and autism. Epigenetic changes can be induced by environmental exposures such as inflammation. Here we tested the hypothesis that prenatal inflammation, a recognized risk factor for schizophrenia and related neurodevelopmental conditions, alters DNA methylation in key brain regions linked to schizophrenia, namely the dopamine rich striatum and endocrine regulatory centre, the hypothalamus. DNA methylation across highly repetitive elements (long interspersed element 1 (LINE1) and intracisternal A-particles (IAPs)) were used to proxy global DNA methylation. We also investigated the Mecp2 gene because it regulates transcription of LINE1 and has a known association with neurodevelopmental disorders. Brain tissue was harvested from 6 week old offspring of mice exposed to the viral analog PolyI:C or saline on gestation day 9. We used Sequenom EpiTYPER assay to quantitatively analyze differences in DNA methylation at IAPs, LINE1 elements and the promoter region of Mecp2. In the hypothalamus, prenatal exposure to PolyI:C caused significant global DNA hypomethylation (t=2.44, P=0.019, PolyI:C mean 69.67%, saline mean 70.19%), especially in females, and significant hypomethylation of the promoter region of Mecp2, (t=3.32, P=0.002; PolyI:C mean 26.57%, saline mean 34.63%). IAP methylation was unaltered. DNA methylation in the striatum was not significantly altered. This study provides the first experimental evidence that exposure to inflammation during prenatal life is associated with epigenetic changes, including Mecp2 promoter hypomethylation. This suggests that environmental and genetic risk factors associated with neurodevelopmental disorders may act upon similar pathways. This is important because epigenetic changes are potentially modifiable and their investigation may open new avenues for treatment.


Subject(s)
Brain/embryology , Brain/immunology , DNA Methylation/genetics , DNA Methylation/immunology , Disease Models, Animal , Epigenesis, Genetic/genetics , Epigenesis, Genetic/immunology , Prenatal Exposure Delayed Effects/genetics , Prenatal Exposure Delayed Effects/immunology , Age Factors , Animals , Corpus Striatum/embryology , Corpus Striatum/immunology , Female , Hypothalamus/embryology , Hypothalamus/immunology , Male , Methyl-CpG-Binding Protein 2/genetics , Mice , Mice, Inbred C57BL , Poly I-C/immunology , Pregnancy , Reference Values , Sex Factors
6.
Brain Behav ; 2(4): 455-67, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22950049

ABSTRACT

Stressful events early in life have been widely linked to behavioral phenotypes and have been implicated in the development of psychiatric disorders. Using a maternal separation paradigm, we investigated phenotypic and epigenetic changes following early life stress in two inbred strains of mice, C57BL/6J and DBA/2J. We found an increase in the corticosterone response to stress in male, C57BL/6J mice that had undergone maternal separation compared to controls. In addition, early life stress induced a number of mild but significant behavioral changes, many of which were sex and strain dependent. Following maternal separation anxiety was decreased in males but increased in DBA/2J females, DBA/2J males displayed reduced exploration of a novel object, and baseline activity was altered in males of both strains. Finally, we examined DNA methylation levels in the hippocampus across promoter regions of Nr3c1, Avp, and Nr4a1, and found altered levels at several CpG sites in maternally separated male mice compared to controls. This study contributes to a growing body of recent literature suggesting that epigenetic changes may mediate the impact of early life stress on behavior. In particular, we establish that the phenotypic and epigenetic responses to an adverse environment differ as a function of genetic background.

SELECTION OF CITATIONS
SEARCH DETAIL
...