Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 59(4): 1388-409, 2016 Feb 25.
Article in English | MEDLINE | ID: mdl-26741168

ABSTRACT

We report the discovery of N-substituted 4-(pyridin-2-yl)thiazole-2-amine derivatives and their subsequent optimization, guided by structure-based design, to give 8-(1H-pyrazol-3-yl)pyrido[3,4-d]pyrimidin-4(3H)-ones, a series of potent JmjC histone N-methyl lysine demethylase (KDM) inhibitors which bind to Fe(II) in the active site. Substitution from C4 of the pyrazole moiety allows access to the histone peptide substrate binding site; incorporation of a conformationally constrained 4-phenylpiperidine linker gives derivatives such as 54j and 54k which demonstrate equipotent activity versus the KDM4 (JMJD2) and KDM5 (JARID1) subfamily demethylases, selectivity over representative exemplars of the KDM2, KDM3, and KDM6 subfamilies, cellular permeability in the Caco-2 assay, and, for 54k, inhibition of H3K9Me3 and H3K4Me3 demethylation in a cell-based assay.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Jumonji Domain-Containing Histone Demethylases/antagonists & inhibitors , Nuclear Proteins/antagonists & inhibitors , Pyrimidinones/chemistry , Pyrimidinones/pharmacology , Repressor Proteins/antagonists & inhibitors , Caco-2 Cells , Cell Membrane Permeability , Enzyme Inhibitors/pharmacokinetics , Humans , Jumonji Domain-Containing Histone Demethylases/chemistry , Jumonji Domain-Containing Histone Demethylases/metabolism , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Pyrimidinones/pharmacokinetics , Repressor Proteins/chemistry , Repressor Proteins/metabolism
2.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 5): 1484-90, 2014 May.
Article in English | MEDLINE | ID: mdl-24816116

ABSTRACT

Lactate dehydrogenase A (LDH-A) is a key enzyme in anaerobic respiration that is predominantly found in skeletal muscle and catalyses the reversible conversion of pyruvate to lactate in the presence of NADH. LDH-A is overexpressed in many tumours and has therefore emerged as an attractive target for anticancer drug discovery. Crystal structures of human LDH-A in the presence of inhibitors have been described, but currently no structures of the apo or binary NADH-bound forms are available for any mammalian LDH-A. Here, the apo structure of human LDH-A was solved at a resolution of 2.1 Å in space group P4122. The active-site loop adopts an open conformation and the packing and crystallization conditions suggest that the crystal form is suitable for soaking experiments. The soaking potential was assessed with the cofactor NADH, which yielded a ligand-bound crystal structure in the absence of any inhibitors. The structures show that NADH binding induces small conformational changes in the active-site loop and an adjacent helix. A comparison with other eukaryotic apo LDH structures reveals the conservation of intra-loop interactions. The structures provide novel insight into cofactor binding and provide the foundation for soaking experiments with fragments and inhibitors.


Subject(s)
L-Lactate Dehydrogenase/chemistry , Catalytic Domain , Crystallography, X-Ray , Humans , Isoenzymes/chemistry , Isoenzymes/metabolism , L-Lactate Dehydrogenase/metabolism , Lactate Dehydrogenase 5 , Ligands , Models, Molecular , NAD/chemistry , NAD/metabolism , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...