Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
RNA Biol ; 19(1): 622-635, 2022.
Article in English | MEDLINE | ID: mdl-35491929

ABSTRACT

Heterogeneous nuclear ribonucleoproteins (hnRNP) function in RNA processing, have RNA-recognition motifs (RRMs) and intrinsically disordered, low-complexity domains (LCDs). While RRMs are drivers of RNA binding, there is only limited knowledge about the RNA interaction by the LCD of some hnRNPs. Here, we show that the LCD of hnRNPA2 interacts with RNA via an embedded Tyr/Gly-rich region which is a disordered RNA-binding motif. RNA binding is maintained upon mutating tyrosine residues to phenylalanines, but abrogated by mutating to alanines, thus we term the RNA-binding region 'F/YGG motif'. The F/YGG motif can bind a broad range of structured (e.g. tRNA) and disordered (e.g. polyA) RNAs, but not rRNA. As the F/YGG otif can also interact with DNA, we consider it a general nucleic acid-binding motif. hnRNPA2 LCD can form dense droplets, by liquid-liquid phase separation (LLPS). Their formation is inhibited by RNA binding, which is mitigated by salt and 1,6-hexanediol, suggesting that both electrostatic and hydrophobic interactions feature in the F/YGG motif. The D290V mutant also binds RNA, which interferes with both LLPS and aggregation thereof. We found homologous regions in a broad range of RNA- and DNA-binding proteins in the human proteome, suggesting that the F/YGG motif is a general nucleic acid-interaction motif.


Subject(s)
Heterogeneous-Nuclear Ribonucleoproteins , RNA , DNA , DNA-Binding Proteins/metabolism , Humans , RNA/genetics , RNA/metabolism
2.
Plant Cell ; 33(4): 1361-1380, 2021 05 31.
Article in English | MEDLINE | ID: mdl-33793856

ABSTRACT

Aluminum (Al) toxicity and inorganic phosphate (Pi) limitation are widespread chronic abiotic and mutually enhancing stresses that profoundly affect crop yield. Both stresses strongly inhibit root growth, resulting from a progressive exhaustion of the stem cell niche. Here, we report on a casein kinase 2 (CK2) inhibitor identified by its capability to maintain a functional root stem cell niche in Arabidopsis thaliana under Al toxic conditions. CK2 operates through phosphorylation of the cell cycle checkpoint activator SUPPRESSOR OF GAMMA RADIATION1 (SOG1), priming its activity under DNA-damaging conditions. In addition to yielding Al tolerance, CK2 and SOG1 inactivation prevents meristem exhaustion under Pi starvation, revealing the existence of a low Pi-induced cell cycle checkpoint that depends on the DNA damage activator ATAXIA-TELANGIECTASIA MUTATED (ATM). Overall, our data reveal an important physiological role for the plant DNA damage response pathway under agriculturally limiting growth conditions, opening new avenues to cope with Pi limitation.


Subject(s)
Aluminum/toxicity , Arabidopsis/cytology , Arabidopsis/drug effects , Casein Kinase II/metabolism , Phosphates/metabolism , Aluminum/pharmacokinetics , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Ataxia Telangiectasia Mutated Proteins/metabolism , Casein Kinase II/genetics , Intercellular Signaling Peptides and Proteins , Phosphates/pharmacology , Phosphorylation , Plant Cells/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Plants, Genetically Modified , Transcription Factors/genetics , Transcription Factors/metabolism
3.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 4): 182-191, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32254052

ABSTRACT

Casein kinase 2 (CK2) is a ubiquitous pleiotropic enzyme that is highly conserved across eukaryotic kingdoms. CK2 is singular amongst kinases as it is highly rigid and constitutively active. Arabidopsis thaliana is widely used as a model system in molecular plant research; the biological functions of A. thaliana CK2 are well studied in vivo and many of its substrates have been identified. Here, crystal structures of the α subunit of A. thaliana CK2 in three crystal forms and of its complex with the nonhydrolyzable ATP analog AMppNHp are presented. While the C-lobe of the enzyme is highly rigid, structural plasticity is observed for the N-lobe. Small but significant displacements within the active cleft are necessary in order to avoid steric clashes with the AMppNHp molecule. Binding of AMppNHp is influenced by a rigid-body motion of the N-lobe that was not previously recognized in maize CK2.


Subject(s)
Arabidopsis Proteins/chemistry , Arabidopsis/enzymology , Casein Kinase II/chemistry , Amino Acid Sequence , Binding Sites , Crystallography, X-Ray , Models, Molecular , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL
...