Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 15: 1396349, 2024.
Article in English | MEDLINE | ID: mdl-39011040

ABSTRACT

Introduction: Immunogenic cell death (ICD) has emerged as a novel option for cancer immunotherapy. The key determinants of ICD encompass antigenicity (the presence of antigens) and adjuvanticity, which involves the release of damage-associated molecular patterns (DAMPs) and various cytokines and chemokines. CX3CL1, also known as neurotactin or fractalkine, is a chemokine involved in cellular signalling and immune cell interactions. CX3CL1 has been denoted as a "find me" signal that stimulates chemotaxis of immune cells towards dying cells, facilitating efferocytosis and antigen presentation. However, in the context of ICD, it is uncertain whether CX3CL1 is an important mediator of the effects of ICD. Methods: In this study, we investigated the intricate role of CX3CL1 in immunogenic apoptosis induced by mitoxantrone (MTX) in cancer cells. The Luminex xMAP technology was used to quantify murine cytokines, chemokines and growth factors to identify pivotal regulatory cytokines released by murine fibrosarcoma MCA205 and melanoma B16-F10 cells undergoing ICD. Moreover, a murine tumour prophylactic vaccination model was employed to analyse the effect of CX3CL1 on the activation of an adaptive immune response against MCA205 cells undergoing ICD. Furthermore, thorough analysis of the TCGA-SKCM public dataset from 98 melanoma patients revealed the role of CX3CL1 and its receptor CX3CR1 in melanoma patients. Results: Our findings demonstrate enhanced CX3CL1 release from apoptotic MCA205 and B16-F10 cells (regardless of the cell type) but not if they are undergoing ferroptosis or accidental necrosis. Moreover, the addition of recombinant CX3CL1 to non-immunogenic doses of MTX-treated, apoptotically dying cancer cells in the murine prophylactic tumour vaccination model induced a robust immunogenic response, effectively increasing the survival of the mice. Furthermore, analysis of melanoma patient data revealed enhanced survival rates in individuals exhibiting elevated levels of CD8+ T cells expressing CX3CR1. Conclusion: These data collectively underscore the importance of the release of CX3CL1 in eliciting an immunogenic response against dying cancer cells and suggest that CX3CL1 may serve as a key switch in conferring immunogenicity to apoptosis.


Subject(s)
Apoptosis , Chemokine CX3CL1 , Animals , Chemokine CX3CL1/metabolism , Mice , Humans , Cell Line, Tumor , Mice, Inbred C57BL , Melanoma, Experimental/immunology , Female , Immunogenic Cell Death , Cytokines/metabolism
2.
Trends Cancer ; 10(6): 486-489, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38553361

ABSTRACT

Immunogenic cell death (ICD) is emerging as a key component of antitumor therapy that harnesses the immune system of the patient to combat cancer. In recent years, several efforts were made to improve the ICD-based therapies. Here, we discuss how nanomaterial-based strategies increase the efficacy of ICD and highlight their benefits and challenges.


Subject(s)
Immunogenic Cell Death , Nanomedicine , Neoplasms , Humans , Immunogenic Cell Death/drug effects , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/drug therapy , Neoplasms/pathology , Nanomedicine/methods , Immunotherapy/methods , Animals , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology
3.
Trends Cancer ; 10(5): 407-416, 2024 May.
Article in English | MEDLINE | ID: mdl-38368244

ABSTRACT

Ferroptosis is a variant of regulated cell death (RCD) elicited by an imbalance of cellular redox homeostasis that culminates with extensive lipid peroxidation and rapid plasma membrane breakdown. Since other necrotic forms of RCD, such as necroptosis, are highly immunogenic, ferroptosis inducers have attracted considerable attention as potential tools to selectively kill malignant cells while eliciting therapeutically relevant tumor-targeting immune responses. However, rather than being consistently immunogenic, ferroptosis mediates context-dependent effects on anticancer immunity. The inability of ferroptotic cancer cells to elicit adaptive immune responses may arise from contextual deficiencies in intrinsic aspects of the process, such as adjuvanticity and antigenicity, or from microenvironmental defects imposed by ferroptotic cancer cells themselves or elicited by the induction of ferroptosis in immune cells.


Subject(s)
Ferroptosis , Lipid Peroxidation , Neoplasms , Tumor Microenvironment , Ferroptosis/immunology , Humans , Neoplasms/immunology , Neoplasms/pathology , Tumor Microenvironment/immunology , Lipid Peroxidation/immunology , Animals , Adaptive Immunity
4.
Int J Radiat Biol ; 100(2): 236-247, 2024.
Article in English | MEDLINE | ID: mdl-37819795

ABSTRACT

Introduction: In radiology, low X-ray energies (<140 keV) are used to obtain an optimal image while in radiotherapy, higher X-ray energies (MeV) are used to eradicate tumor tissue. In radiation research, both these X-ray energies being used to extrapolate in vitro research to clinical practice. However, the energy deposition of X-rays depends on their energy spectrum, which might lead to changes in biological response. Therefore, this study compared the DNA damage response (DDR) in peripheral blood lymphocytes (PBLs) exposed to X-rays with varying beam quality, mean photon energy (MPE) and dose rate.Methods: The DDR was evaluated in peripheral blood lymphocytes (PBLs) by the É£-H2AX foci assay, the cytokinesis-block micronucleus assay and an SYTOX-based cell death assay, combined with specific cell death inhibitors. Cell cultures were irradiated with a 220 kV X-ray research cabinet (SARRP, X-Strahl) or a 6 MV X-ray linear accelerator (Elekta Synergy). Three main physical parameters were investigated: beam quality (V), MPE (eV) and dose rate (Gy/min). Additional copper (Cu) filtration caused variation in the MPE (78 keV, 94 keV, 118 keV) at SARRP; dose rates were varied by adjusting tube current for 220 kV X-rays (0.33-3 Gy/min) or water-phantom depth in the 6 MV set-up (3-6 Gy/min).Results: The induction of chromosomal damage and initial (30 min) DNA double-stranded breaks (DSBs) were significantly higher for 220 kV X-rays compared to 6 MV X-rays, while cell death induction was similar. Specific cell death inhibitors for apoptosis, necroptosis and ferroptosis were not capable of blocking cell death after irradiation using low or high-energy X-rays. Additional Cu filtration increased the MPE, which significantly decreased the amount of chromosomal damage and DSBs. Within the tested ranges no specific effects of dose rate variation were observed.Conclusion: The DDR in PBLs is influenced by the beam quality and MPE. This study reinforces the need for consideration and inclusion of all physical parameters in radiation-related studies.


Subject(s)
DNA Damage , Lymphocytes , X-Rays , Radiography , Lymphocytes/radiation effects , DNA Repair , Dose-Response Relationship, Radiation
5.
Adv Healthc Mater ; 12(28): e2301025, 2023 11.
Article in English | MEDLINE | ID: mdl-37273241

ABSTRACT

The importance of the clearance of dead cells is shown to have a regulatory role for normal tissue homeostasis and for the modulation of immune responses. However, how mechanobiological properties of dead cells affect efferocytosis remains largely unknown. Here, it is reported that the Young's modulus of cancer cells undergoing ferroptosis is reduced. To modulate their Young's modulus a layer-by-layer (LbL) nanocoating is developed. Scanning electron and fluorescence microscopy confirm coating efficiency of ferroptotic cells while atomic force microscopy reveals encapsulation of the dead cells increases their Young's modulus dependent on the number of applied LbL layers which increases their efferocytosis by primary macrophages. This work demonstrates the crucial role of mechanobiology of dead cells in regulating their efferocytosis by macrophages which can be exploited for the development of novel therapeutic strategies for diseases where modulation of efferocytosis can be potentially beneficial and for the design of drug delivery systems for cancer therapy.


Subject(s)
Neoplasms , Phagocytosis , Microscopy, Atomic Force , Macrophages , Neoplasms/drug therapy
6.
Oncoimmunology ; 12(1): 2182992, 2023.
Article in English | MEDLINE | ID: mdl-36875549

ABSTRACT

Ferroptosis has gained interest due to it immunogenicity and the higher sensitivity of cancer cells to it. However, it was recently shown that ferroptosis in tumor-associated neutrophils leads to immunosuppression and negatively impacts therapy. Here, we discuss the potential implications of the two sides (friend versus foe) of ferroptosis in cancer immunotherapy.


Subject(s)
Ferroptosis , Neoplasms , Immunotherapy , Immunosuppression Therapy , Neutrophils
7.
Cells ; 11(22)2022 11 21.
Article in English | MEDLINE | ID: mdl-36429133

ABSTRACT

Immunogenic cell death (ICD) is a functionally unique form of cell death that promotes a T-cell-dependent anti-tumor immune response specific to antigens originating from dying cancer cells. Many anticancer agents and strategies induce ICD, but despite their robust effects in vitro and in vivo on mice, translation into the clinic remains challenging. A major hindrance in antitumor research is the poor predictive ability of classic 2D in vitro models, which do not consider tumor biological complexity, such as the contribution of the tumor microenvironment (TME), which plays a crucial role in immunosuppression and cancer evasion. In this review, we describe different tumor models, from 2D cultures to organ-on-a-chip technology, as well as spheroids and perfusion bioreactors, all of which mimic the different degrees of the TME complexity. Next, we discuss how 3D cell cultures can be applied to study ICD and how to increase the translational potential of the ICD inducers. Finally, novel research directions are provided regarding ICD in the 3D cellular context which may lead to novel immunotherapies for cancer.


Subject(s)
Antineoplastic Agents , Neoplasms , Mice , Animals , Immunogenic Cell Death , Tumor Microenvironment , Lab-On-A-Chip Devices , Immunotherapy , Neoplasms/metabolism , Antineoplastic Agents/pharmacology
8.
J Immunother Cancer ; 9(12)2021 12.
Article in English | MEDLINE | ID: mdl-34903554

ABSTRACT

Ferroptosis is a recently discovered form of regulated cell death that is morphologically, genetically, and biochemically distinct from apoptosis and necroptosis, and its potential use in anticancer therapy is emerging. The strong immunogenicity of (early) ferroptotic cancer cells broadens the current concept of immunogenic cell death and opens up new possibilities for cancer treatment. In particular, induction of immunogenic ferroptosis could be beneficial for patients with cancers resistant to apoptosis and necroptosis. However, ferroptotic cancer cells may be a rich source of oxidized lipids, which contribute to decreased phagocytosis and antigen cross-presentation by dendritic cells and thus may favor tumor evasion. This could explain the non-immunogenicity of late ferroptotic cells. Besides the presence of lactate in the tumor microenvironment, acidification and hypoxia are essential factors promoting ferroptosis resistance and affecting its immunogenicity. Here, we critically discuss the crucial mediators controlling the immunogenicity of ferroptosis that modulate the induction of antitumor immunity. We emphasize that it will be necessary to also identify the tolerogenic (ie, immunosuppressive) nature of ferroptosis, which can lead to tumor evasion.


Subject(s)
Ferroptosis , Immunogenic Cell Death , Neoplasms/immunology , Neoplasms/pathology , Tumor Microenvironment , Animals , Humans
9.
Cells ; 9(3)2020 03 13.
Article in English | MEDLINE | ID: mdl-32183000

ABSTRACT

The failure of drug efficacy in clinical trials remains a big issue in cancer research. This is largely due to the limitations of two-dimensional (2D) cell cultures, the most used tool in drug screening. Nowadays, three-dimensional (3D) cultures, including spheroids, are acknowledged to be a better model of the in vivo environment, but detailed cell death assays for 3D cultures (including those for ferroptosis) are scarce. In this work, we show that a new cell death analysis method, named 3D Cell Death Assay (3DELTA), can efficiently determine different cell death types including ferroptosis and quantitatively assess cell death in tumour spheroids. Our method uses Sytox dyes as a cell death marker and Triton X-100, which efficiently permeabilizes all cells in spheroids, was used to establish 100% cell death. After optimization of Sytox concentration, Triton X-100 concentration and timing, we showed that the 3DELTA method was able to detect signals from all cells without the need to disaggregate spheroids. Moreover, in this work we demonstrated that 2D experiments cannot be extrapolated to 3D cultures as 3D cultures are less sensitive to cell death induction. In conclusion, 3DELTA is a more cost-effective way to identify and measure cell death type in 3D cultures, including spheroids.


Subject(s)
Cell Death , Spheroids, Cellular/pathology , Animals , Cell Count , Cell Culture Techniques , Cell Death/drug effects , Cell Line, Tumor , Drug Evaluation, Preclinical , Ferroptosis/drug effects , Fluorescence , Fluorescent Dyes/metabolism , Humans , Mice , Spheroids, Cellular/cytology , Spheroids, Cellular/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...