Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
Add more filters










Publication year range
1.
Cell Mol Life Sci ; 80(12): 360, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37971522

ABSTRACT

Mechanisms underlying deviant cell size fluctuations among clonal bacterial siblings are generally considered to be cryptic and stochastic in nature. However, by scrutinizing heat-stressed populations of the model bacterium Escherichia coli, we uncovered the existence of a deterministic asymmetry in cell division that is caused by the presence of intracellular protein aggregates (PAs). While these structures typically locate at the cell pole and segregate asymmetrically among daughter cells, we now show that the presence of a polar PA consistently causes a more distal off-center positioning of the FtsZ division septum. The resulting increased length of PA-inheriting siblings persists over multiple generations and could be observed in both E. coli and Bacillus subtilis populations. Closer investigation suggests that a PA can physically perturb the nucleoid structure, which subsequently leads to asymmetric septation.


Subject(s)
Bacterial Proteins , Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Bacterial Proteins/metabolism , Protein Aggregates , Cell Division , Bacteria/metabolism , Bacillus subtilis/metabolism
2.
Int J Mol Sci ; 24(22)2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38003545

ABSTRACT

Balancing peptidoglycan (PG) synthesis and degradation with precision is essential for bacterial growth, yet our comprehension of this intricate process remains limited. The NlpI-Prc proteolytic complex plays a crucial but poorly understood role in the regulation of multiple enzymes involved in PG metabolism. In this paper, through fluorescent D-amino acid 7-hydroxycoumarincarbonylamino-D-alanine (HADA) labeling and immunolabeling assays, we have demonstrated that the NlpI-Prc complex regulates the activity of PG transpeptidases and subcellular localization of PBP3 under certain growth conditions. PBP7 (a PG hydrolase) and MltD (a lytic transglycosylase) were confirmed to be negatively regulated by the NlpI-Prc complex by an in vivo degradation assay. The endopeptidases, MepS, MepM, and MepH, have consistently been demonstrated as redundantly essential "space makers" for nascent PG insertion. However, we observed that the absence of NlpI-Prc complex can alleviate the lethality of the mepS mepM mepH mutant. A function of PG lytic transglycosylases MltA and MltD as "space makers" was proposed through multiple gene deletions. These findings unveil novel roles for NlpI-Prc in the regulation of both PG synthesis and degradation, shedding light on the previously undiscovered function of lytic transglycosylases as "space makers" in PG expansion.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Escherichia coli/metabolism , Peptidoglycan/metabolism , Escherichia coli Proteins/metabolism , Proteolysis , Endopeptidases/metabolism , Cell Wall/metabolism , Lipoproteins/metabolism , Cysteine Endopeptidases/metabolism
3.
Sci Rep ; 12(1): 17977, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36289441

ABSTRACT

The fluorescent proteins superfolder mTurquoise2ox (sfTq2ox) and mNeonGreen function excellently in mammalian cells, but are not well expressed in E. coli when forming the N-terminus of constructs. Expression was increased by decreasing structures at the start of their coding sequences in the mRNA. Unfortunately, the expression of mNeonGreen started from methionine at position ten as optimisation introduced an alternative RBS in the GFP N-terminus of mNeonGreen. The original start-codon was not deleted, which caused the expression of isomers starting at the original start-codon and at the start-codon at the beginning of the GFP N-terminus. By omitting the GFP N-terminus of mNeonGreen and optimising the structure of its mRNA, the expression of a mixture of isomers was avoided, and up to ~ 50-fold higher expression rates were achieved for mNeonGreen. Both fluorescent proteins can now be expressed at readily detectable levels in E. coli and can be used for various purposes. One explored application is the detection of in-cell protein interactions by FRET. mNeonGreen and sfTq2ox form a FRET pair with a larger dynamic range than commonly used donor-acceptor pairs, allowing for an excellent signal-to-noise ratio, which supports the detection of conformational changes that affect the distance between the interacting proteins.


Subject(s)
Cytoplasm , Escherichia coli , Fluorescence Resonance Energy Transfer , Luminescent Proteins , Animals , Cytoplasm/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Green Fluorescent Proteins/metabolism , Luminescent Proteins/metabolism , Mammals/metabolism , Methionine/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
4.
J Am Chem Soc ; 144(33): 15303-15313, 2022 08 24.
Article in English | MEDLINE | ID: mdl-35945166

ABSTRACT

The use of antibiotics is threatened by the emergence and spread of multidrug-resistant strains of bacteria. Thus, there is a need to develop antibiotics that address new targets. In this respect, the bacterial divisome, a multi-protein complex central to cell division, represents a potentially attractive target. Of particular interest is the FtsQB subcomplex that plays a decisive role in divisome assembly and peptidoglycan biogenesis in E. coli. Here, we report the structure-based design of a macrocyclic covalent inhibitor derived from a periplasmic region of FtsB that mediates its binding to FtsQ. The bioactive conformation of this motif was stabilized by a customized cross-link resulting in a tertiary structure mimetic with increased affinity for FtsQ. To increase activity, a covalent handle was incorporated, providing an inhibitor that impedes the interaction between FtsQ and FtsB irreversibly. The covalent inhibitor reduced the growth of an outer membrane-permeable E. coli strain, concurrent with the expected loss of FtsB localization, and also affected the infection of zebrafish larvae by a clinical E. coli strain. This first-in-class inhibitor of a divisome protein-protein interaction highlights the potential of proteomimetic molecules as inhibitors of challenging targets. In particular, the covalent mode-of-action can serve as an inspiration for future antibiotics that target protein-protein interactions.


Subject(s)
Escherichia coli Proteins , Animals , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Cell Cycle Proteins/chemistry , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Membrane Proteins/chemistry , Zebrafish/metabolism
5.
PLoS Genet ; 18(5): e1010222, 2022 05.
Article in English | MEDLINE | ID: mdl-35604931

ABSTRACT

Insertion of new material into the Escherichia coli peptidoglycan (PG) sacculus between the cytoplasmic membrane and the outer membrane requires a well-organized balance between synthetic and hydrolytic activities to maintain cell shape and avoid lysis. Since most bacteria carry multiple enzymes carrying the same type of PG hydrolytic activity, we know little about the specific function of given enzymes. Here we show that the DD-carboxy/endopeptidase PBP4 localizes in a PBP1A/LpoA and FtsEX dependent fashion at midcell during septal PG synthesis. Midcell localization of PBP4 requires its non-catalytic domain 3 of unknown function, but not the activity of PBP4 or FtsE. Microscale thermophoresis with isolated proteins shows that PBP4 interacts with NlpI and the FtsEX-interacting protein EnvC, an activator of amidases AmiA and AmiB, which are needed to generate denuded glycan strands to recruit the initiator of septal PG synthesis, FtsN. The domain 3 of PBP4 is needed for the interaction with NlpI and EnvC, but not PBP1A or LpoA. In vivo crosslinking experiments confirm the interaction of PBP4 with PBP1A and LpoA. We propose that the interaction of PBP4 with EnvC, whilst not absolutely necessary for mid-cell recruitment of either protein, coordinates the activities of PBP4 and the amidases, which affects the formation of denuded glycan strands that attract FtsN. Consistent with this model, we found that the divisome assembly at midcell was premature in cells lacking PBP4, illustrating how the complexity of interactions affect the timing of cell division initiation.


Subject(s)
Escherichia coli Proteins , Escherichia coli , ATP-Binding Cassette Transporters/metabolism , Amidohydrolases/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Endopeptidases , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Lipoproteins/metabolism , N-Acetylmuramoyl-L-alanine Amidase/metabolism , Peptidoglycan/metabolism
6.
Int J Mol Sci ; 23(7)2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35408901

ABSTRACT

The synthesis of a peptidoglycan septum is a fundamental part of bacterial fission and is driven by a multiprotein dynamic complex called the divisome. FtsW and FtsI are essential proteins that synthesize the peptidoglycan septum and are controlled by the regulatory FtsBLQ subcomplex and the activator FtsN. However, their mode of regulation has not yet been uncovered in detail. Understanding this process in detail may enable the development of new compounds to combat the rise in antibiotic resistance. In this review, recent data on the regulation of septal peptidoglycan synthesis is summarized and discussed. Based on structural models and the collected data, multiple putative interactions within FtsWI and with regulators are uncovered. This elaborates on and supports an earlier proposed model that describes active and inactive conformations of the septal peptidoglycan synthesis complex that are stabilized by these interactions. Furthermore, a new model on the spatial organization of the newly synthesized peptidoglycan and the synthesis complex is presented. Overall, the updated model proposes a balance between several allosteric interactions that determine the state of septal peptidoglycan synthesis.


Subject(s)
Peptidoglycan , Bacterial Proteins/metabolism , Cell Wall/metabolism , Membrane Proteins/metabolism , Peptidoglycan/metabolism
7.
Int J Mol Sci ; 23(6)2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35328438

ABSTRACT

FtsZ, the bacterial tubulin-homolog, plays a central role in cell division and polymerizes into a ring-like structure at midcell to coordinate other cell division proteins. The rod-shaped gamma-proteobacterium Candidatus Thiosymbion oneisti has a medial discontinuous ellipsoidal "Z-ring." Ca. T. oneisti FtsZ shows temperature-sensitive characteristics when it is expressed in Escherichia coli, where it localizes at midcell. The overexpression of Ca. T. oneisti FtsZ interferes with cell division and results in filamentous cells. In addition, it forms ring- and barrel-like structures independently of E. coli FtsZ, which suggests that the difference in shape and size of the Ca. T. oneisti FtsZ ring is likely the result of its interaction with Z-ring organizing proteins. Similar to some temperature-sensitive alleles of E. coli FtsZ, Ca. T. oneisti FtsZ has a weak GTPase and does not polymerize in vitro. The temperature sensitivity of Ca. Thiosymbion oneisti FtsZ is likely an adaptation to the preferred temperature of less than 30 °C of its host, the nematode Laxus oneistus.


Subject(s)
Chromatiaceae , Escherichia coli Proteins , Bacterial Proteins/metabolism , Cell Cycle Proteins/metabolism , Cytoskeletal Proteins/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , GTP Phosphohydrolases/metabolism , Protein Binding , Temperature
9.
Int J Mol Sci ; 22(22)2021 Nov 09.
Article in English | MEDLINE | ID: mdl-34829983

ABSTRACT

The BAM is a macromolecular machine responsible for the folding and the insertion of integral proteins into the outer membrane of diderm Gram-negative bacteria. In Escherichia coli, it consists of a transmembrane ß-barrel subunit, BamA, and four outer membrane lipoproteins (BamB-E). Using BAM-specific antibodies, in E. coli cells, the complex is shown to localize in the lateral wall in foci. The machinery was shown to be enriched at midcell with specific cell cycle timing. The inhibition of septation by aztreonam did not alter the BAM midcell localization substantially. Furthermore, the absence of late cell division proteins at midcell did not impact BAM timing or localization. These results imply that the BAM enrichment at the site of constriction does not require an active cell division machinery. Expression of the Tre1 toxin, which impairs the FtsZ filamentation and therefore midcell localization, resulted in the complete loss of BAM midcell enrichment. A similar effect was observed for YidC, which is involved in the membrane insertion of cell division proteins in the inner membrane. The presence of the Z-ring is needed for preseptal peptidoglycan (PG) synthesis. As BAM was shown to be embedded in the PG layer, it is possible that BAM is inserted preferentially simultaneously with de novo PG synthesis to facilitate the insertion of OMPs in the newly synthesized outer membrane.


Subject(s)
Bacterial Outer Membrane Proteins/ultrastructure , Bacterial Proteins/genetics , Cytoskeletal Proteins/genetics , Escherichia coli Proteins/genetics , Membrane Transport Proteins/genetics , Bacterial Outer Membrane Proteins/genetics , Bacterial Proteins/ultrastructure , Cell Division/genetics , Cytoskeletal Proteins/ultrastructure , Escherichia coli/chemistry , Escherichia coli/genetics , Escherichia coli Infections/genetics , Escherichia coli Infections/microbiology , Escherichia coli Proteins/ultrastructure , Gram-Negative Bacteria/genetics , Gram-Negative Bacteria/ultrastructure , Lipoproteins/genetics , Lipoproteins/ultrastructure , Membrane Transport Proteins/ultrastructure , Protein Folding , Protein Multimerization/genetics
10.
Antibiotics (Basel) ; 10(3)2021 Mar 09.
Article in English | MEDLINE | ID: mdl-33803189

ABSTRACT

Peptidoglycan (PG) is essential for bacterial survival and maintaining cell shape. The rod-shaped model bacterium Escherichia coli has a set of seven endopeptidases that remodel the PG during cell growth. The gamma proteobacterium Candidatus Thiosymbion oneisti is also rod-shaped and attaches to the cuticle of its nematode host by one pole. It widens and divides by longitudinal fission using the canonical proteins MreB and FtsZ. The PG layer of Ca. T. oneisti has an unusually high peptide cross-linkage of 67% but relatively short glycan chains with an average length of 12 disaccharides. Curiously, it has only two predicted endopeptidases, MepA and PBP4. Cellular localization of symbiont PBP4 by fluorescently labeled antibodies reveals its polar localization and its accumulation at the constriction sites, suggesting that PBP4 is involved in PG biosynthesis during septum formation. Isolated symbiont PBP4 protein shows a different selectivity for ß-lactams compared to its homologue from E. coli. Bocillin-FL binding by PBP4 is activated by some ß-lactams, suggesting the presence of an allosteric binding site. Overall, our data point to a role of PBP4 in PG cleavage during the longitudinal cell division and to a PG that might have been adapted to the symbiotic lifestyle.

11.
J Biol Chem ; 296: 100700, 2021.
Article in English | MEDLINE | ID: mdl-33895137

ABSTRACT

YhcB, a poorly understood protein conserved across gamma-proteobacteria, contains a domain of unknown function (DUF1043) and an N-terminal transmembrane domain. Here, we used an integrated approach including X-ray crystallography, genetics, and molecular biology to investigate the function and structure of YhcB. The Escherichia coli yhcB KO strain does not grow at 45 °C and is hypersensitive to cell wall-acting antibiotics, even in the stationary phase. The deletion of yhcB leads to filamentation, abnormal FtsZ ring formation, and aberrant septum development. The Z-ring is essential for the positioning of the septa and the initiation of cell division. We found that YhcB interacts with proteins of the divisome (e.g., FtsI, FtsQ) and elongasome (e.g., RodZ, RodA). Seven of these interactions are also conserved in Yersinia pestis and/or Vibrio cholerae. Furthermore, we mapped the amino acid residues likely involved in the interactions of YhcB with FtsI and RodZ. The 2.8 Å crystal structure of the cytosolic domain of Haemophilus ducreyi YhcB shows a unique tetrameric α-helical coiled-coil structure likely to be involved in linking the Z-ring to the septal peptidoglycan-synthesizing complexes. In summary, YhcB is a conserved and conditionally essential protein that plays a role in cell division and consequently affects envelope biogenesis. Based on these findings, we propose to rename YhcB to ZapG (Z-ring-associated protein G). This study will serve as a starting point for future studies on this protein family and on how cells transit from exponential to stationary survival.


Subject(s)
Bacterial Proteins/metabolism , Peptidoglycan/biosynthesis , Proteobacteria/cytology , Proteobacteria/metabolism , Bacterial Proteins/chemistry , Cell Division , Crystallography, X-Ray , Models, Molecular , Protein Conformation
12.
Nat Microbiol ; 6(5): 538-539, 2021 05.
Article in English | MEDLINE | ID: mdl-33927383
13.
Int J Mol Sci ; 22(4)2021 Feb 12.
Article in English | MEDLINE | ID: mdl-33673366

ABSTRACT

Gram-negative bacteria possess a three-layered envelope composed of an inner membrane, surrounded by a peptidoglycan (PG) layer, enclosed by an outer membrane. The envelope ensures protection against diverse hostile milieus and offers an effective barrier against antibiotics. The layers are connected to each other through many protein interactions. Bacteria evolved sophisticated machineries that maintain the integrity and the functionality of each layer. The ß-barrel assembly machinery (BAM), for example, is responsible for the insertion of the outer membrane integral proteins including the lipopolysaccharide transport machinery protein LptD. Labelling bacterial cells with BAM-specific fluorescent antibodies revealed the spatial arrangement between the machinery and the PG layer. The antibody detection of each BAM subunit required the enzymatic digestion of the PG layer. Enhancing the spacing between the outer membrane and PG does not abolish this prerequisite. This suggests that BAM locally sets the distance between OM and the PG layer. Our results shed new light on the local organization of the envelope.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Peptidoglycan/metabolism
14.
PLoS Genet ; 16(12): e1009276, 2020 12.
Article in English | MEDLINE | ID: mdl-33370261

ABSTRACT

Rod-shape of most bacteria is maintained by the elongasome, which mediates the synthesis and insertion of peptidoglycan into the cylindrical part of the cell wall. The elongasome contains several essential proteins, such as RodA, PBP2, and the MreBCD proteins, but how its activities are regulated remains poorly understood. Using E. coli as a model system, we investigated the interactions between core elongasome proteins in vivo. Our results show that PBP2 and RodA form a complex mediated by their transmembrane and periplasmic parts and independent of their catalytic activity. MreC and MreD also interact directly with PBP2. MreC elicits a change in the interaction between PBP2 and RodA, which is suppressed by MreD. The cytoplasmic domain of PBP2 is required for this suppression. We hypothesize that the in vivo measured PBP2-RodA interaction change induced by MreC corresponds to the conformational change in PBP2 as observed in the MreC-PBP2 crystal structure, which was suggested to be the "on state" of PBP2. Our results indicate that the balance between MreC and MreD determines the activity of PBP2, which could open new strategies for antibiotic drug development.


Subject(s)
Bacterial Proteins/metabolism , Escherichia coli Proteins/metabolism , Membrane Proteins/metabolism , Penicillin-Binding Proteins/metabolism , Bacterial Proteins/chemistry , Binding Sites , Escherichia coli , Escherichia coli Proteins/chemistry , Membrane Proteins/chemistry , Penicillin-Binding Proteins/chemistry , Protein Binding
15.
Int J Mol Sci ; 21(9)2020 Apr 29.
Article in English | MEDLINE | ID: mdl-32365468

ABSTRACT

Bacterial cell division is guided by filamenting temperature-sensitive Z (FtsZ) treadmilling at midcell. FtsZ itself is regulated by FtsZ-associated proteins (Zaps) that couple it to different cellular processes. Z-associated protein A (ZapA) is known to enhance FtsZ bundling but also forms a synchronizing link with chromosome segregation through Z-associated protein B (ZapB) and matS-bound MatP. ZapA likely exists as dimers and tetramers in the cell. Using a ZapA mutant that is only able to form dimers in vitro (ZapAI83E), this paper investigates the effects of ZapA multimerization state on its interaction partners and cell division. By employing fluorescence microscopy and Förster resonance energy transfer in vivo it was shown that ZapAI83E is unable to complement a zapA deletion strain and localizes diffusely through the cell but still interacts with FtsZ that is not part of the cell division machinery. The diffusely-localized ZapAI83E is unable to recruit ZapB, which in its presence localizes unipolarly. Interestingly, the localization profiles of the chromosome and unipolar ZapB anticorrelate. The work presented here confirms previously reported in vitro effects of ZapA multimerization in vivo and places it in a broader context by revealing the strong implications for ZapB and chromosome localization and ter linkage.


Subject(s)
Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Division/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Escherichia coli/physiology , Mutation , Carrier Proteins/chemistry , Cell Cycle Proteins/chemistry , Escherichia coli Proteins/chemistry , Phenotype , Protein Binding , Protein Multimerization , Protein Transport
16.
EMBO J ; 39(5): e102246, 2020 03 02.
Article in English | MEDLINE | ID: mdl-32009249

ABSTRACT

The peptidoglycan (PG) sacculus provides bacteria with the mechanical strength to maintain cell shape and resist osmotic stress. Enlargement of the mesh-like sacculus requires the combined activity of peptidoglycan synthases and hydrolases. In Escherichia coli, the activity of two PG synthases is driven by lipoproteins anchored in the outer membrane (OM). However, the regulation of PG hydrolases is less well understood, with only regulators for PG amidases having been described. Here, we identify the OM lipoprotein NlpI as a general adaptor protein for PG hydrolases. NlpI binds to different classes of hydrolases and can specifically form complexes with various PG endopeptidases. In addition, NlpI seems to contribute both to PG elongation and division biosynthetic complexes based on its localization and genetic interactions. Consistent with such a role, we reconstitute PG multi-enzyme complexes containing NlpI, the PG synthesis regulator LpoA, its cognate bifunctional synthase, PBP1A, and different endopeptidases. Our results indicate that peptidoglycan regulators and adaptors are part of PG biosynthetic multi-enzyme complexes, regulating and potentially coordinating the spatiotemporal action of PG synthases and hydrolases.


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli/enzymology , Lipoproteins/metabolism , Multienzyme Complexes , N-Acetylmuramoyl-L-alanine Amidase/metabolism , Cell Wall/enzymology , Endopeptidases/genetics , Endopeptidases/metabolism , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Lipoproteins/genetics , N-Acetylmuramoyl-L-alanine Amidase/genetics , Peptidoglycan/metabolism
17.
mBio ; 10(3)2019 05 28.
Article in English | MEDLINE | ID: mdl-31138739

ABSTRACT

Division ring formation at midcell is controlled by various mechanisms in Escherichia coli, one of them being the linkage between the chromosomal Ter macrodomain and the Z-ring mediated by MatP, a DNA binding protein that organizes this macrodomain and contributes to the prevention of premature chromosome segregation. Here we show that, during cell division, just before splitting the daughter cells, MatP seems to localize close to the cytoplasmic membrane, suggesting that this protein might interact with lipids. To test this hypothesis, we investigated MatP interaction with lipids in vitro We found that, when encapsulated inside vesicles and microdroplets generated by microfluidics, MatP accumulates at phospholipid bilayers and monolayers matching the lipid composition in the E. coli inner membrane. MatP binding to lipids was independently confirmed using lipid-coated microbeads and biolayer interferometry assays, which suggested that the recognition is mainly hydrophobic. Interaction of MatP with the lipid membranes also occurs in the presence of the DNA sequences specifically targeted by the protein, but there is no evidence of ternary membrane/protein/DNA complexes. We propose that the association of MatP with lipids may modulate its spatiotemporal localization and its recognition of other ligands.IMPORTANCE The division of an E. coli cell into two daughter cells with equal genomic information and similar size requires duplication and segregation of the chromosome and subsequent scission of the envelope by a protein ring, the Z-ring. MatP is a DNA binding protein that contributes both to the positioning of the Z-ring at midcell and the temporal control of nucleoid segregation. Our integrated in vivo and in vitro analysis provides evidence that MatP can interact with lipid membranes reproducing the phospholipid mixture in the E. coli inner membrane, without concomitant recruitment of the short DNA sequences specifically targeted by MatP. This observation strongly suggests that the membrane may play a role in the regulation of the function and localization of MatP, which could be relevant for the coordination of the two fundamental processes in which this protein participates, nucleoid segregation and cell division.


Subject(s)
Cell Division , Cell Membrane/metabolism , Chromosomal Proteins, Non-Histone/metabolism , DNA-Binding Proteins/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromosomes, Bacterial/metabolism , DNA, Bacterial/genetics , DNA-Binding Proteins/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics
19.
mBio ; 10(1)2019 02 05.
Article in English | MEDLINE | ID: mdl-30723128

ABSTRACT

Gram-negative bacteria have a tripartite cell envelope with the cytoplasmic membrane (CM), a stress-bearing peptidoglycan (PG) layer, and the asymmetric outer membrane (OM) containing lipopolysaccharide (LPS) in the outer leaflet. Cells must tightly coordinate the growth of their complex envelope to maintain cellular integrity and OM permeability barrier function. The biogenesis of PG and LPS relies on specialized macromolecular complexes that span the entire envelope. In this work, we show that Escherichia coli cells are capable of avoiding lysis when the transport of LPS to the OM is compromised, by utilizing LD-transpeptidases (LDTs) to generate 3-3 cross-links in the PG. This PG remodeling program relies mainly on the activities of the stress response LDT, LdtD, together with the major PG synthase PBP1B, its cognate activator LpoB, and the carboxypeptidase PBP6a. Our data support a model according to which these proteins cooperate to strengthen the PG in response to defective OM synthesis.IMPORTANCE In Gram-negative bacteria, the outer membrane protects the cell against many toxic molecules, and the peptidoglycan layer provides protection against osmotic challenges, allowing bacterial cells to survive in changing environments. Maintaining cell envelope integrity is therefore a question of life or death for a bacterial cell. Here we show that Escherichia coli cells activate the LD-transpeptidase LdtD to introduce 3-3 cross-links in the peptidoglycan layer when the integrity of the outer membrane is compromised, and this response is required to avoid cell lysis. This peptidoglycan remodeling program is a strategy to increase the overall robustness of the bacterial cell envelope in response to defects in the outer membrane.


Subject(s)
Cell Membrane/metabolism , Cell Wall/metabolism , Escherichia coli/physiology , Microbial Viability , Peptidoglycan/metabolism , Bacteriolysis , Biological Transport , Escherichia coli Proteins/metabolism , Lipopolysaccharides/metabolism , Penicillin-Binding Proteins/metabolism , Peptidoglycan Glycosyltransferase/metabolism , Peptidyl Transferases/metabolism , Serine-Type D-Ala-D-Ala Carboxypeptidase/metabolism
20.
mBio ; 10(1)2019 02 26.
Article in English | MEDLINE | ID: mdl-30808703

ABSTRACT

Assembly of the division machinery in Gram-negative and Gram-positive bacteria occurs in two time-dependent steps. First, the FtsZ proto-ring localizes at midcell including some FtsN molecules. Subsequently, the proteins that catalyze and regulate septal peptidoglycan (PG) synthesis are recruited including among others, the FtsBLQ-PB1B-FtsW-PBP3 complex. Further accumulation of FtsN finally allows initiation of cell division. It was known that FtsA and FtsQLB somehow prevented this initiation. Recently, A. Boes, S. Olatunji, E. Breukink, and M. Terrak (mBio 10:e01912-18, 2019, https://doi.org/10.1128/mBio.01912-18) reported that this is caused by inhibition of the activity of the PG synthases by FtsBLQ, which has to be outcompeted by accumulation of the PBP1b activating FtsN. This supports a central structural as well as regulatory role for the FtsBLQ protein complex that is conserved only in prokaryotes, making it an attractive target for antibiotic development.


Subject(s)
Escherichia coli Proteins/chemistry , Peptidoglycan , Cell Division , Escherichia coli/chemistry , Membrane Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...