Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-37645826

ABSTRACT

A prevailing assumption in our understanding of how neurons in the primary visual cortex (V1) integrate contextual information is that such processes are spatially uniform. Conversely, perceptual phenomena such as visual crowding, the impaired ability to accurately recognize a target stimulus among distractors, suggest that interactions among stimuli are distinctly non-uniform. Prior studies have shown flankers at specific spatial geometries exert differential effects on target perception. To resolve this discrepancy, we investigated how flanker geometry impacted the representation of a target stimulus in the laminar microcircuits of V1. Our study reveals flanker location differentially impairs stimulus representation in excitatory neurons in the superficial and input layers of V1 by tuned suppression and untuned facilitation of orientation responses. Mechanistically, this effect can be explained by asymmetrical spatial kernels in a normalization model of cortical activity. Strikingly, these non-uniform modulations of neural representation mirror perceptual anisotropies. These results establish the non-uniform spatial integration of information in the earliest stages of cortical processing as a fundamental limitation of spatial vision.

2.
Cell Rep ; 42(7): 112720, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37392385

ABSTRACT

Saccadic eye movements are known to cause saccadic suppression, a temporary reduction in visual sensitivity and visual cortical firing rates. While saccadic suppression has been well characterized at the level of perception and single neurons, relatively little is known about the visual cortical networks governing this phenomenon. Here we examine the effects of saccadic suppression on distinct neural subpopulations within visual area V4. We find subpopulation-specific differences in the magnitude and timing of peri-saccadic modulation. Input-layer neurons show changes in firing rate and inter-neuronal correlations prior to saccade onset, and putative inhibitory interneurons in the input layer elevate their firing rate during saccades. A computational model of this circuit recapitulates our empirical observations and demonstrates that an input-layer-targeting pathway can initiate saccadic suppression by enhancing local inhibitory activity. Collectively, our results provide a mechanistic understanding of how eye movement signaling interacts with cortical circuitry to enforce visual stability.


Subject(s)
Saccades , Visual Cortex , Animals , Reaction Time/physiology , Visual Cortex/physiology , Primates , Neurons/physiology , Visual Perception/physiology , Photic Stimulation
3.
bioRxiv ; 2023 May 02.
Article in English | MEDLINE | ID: mdl-37205367

ABSTRACT

Our eyes are in constant motion, yet we perceive the visual world as being stable. Predictive remapping of receptive fields is thought to be one of the critical mechanisms for enforcing perceptual stability during eye movements. While receptive field remapping has been identified in several cortical areas, the spatiotemporal dynamics of remapping, and its consequences on the tuning properties of neurons, remain poorly understood. Here, we tracked remapping receptive fields in hundreds of neurons from visual Area V2 while subjects performed a cued saccade task. We found that remapping was far more widespread in Area V2 than previously reported and can be found in neurons from all recorded neural populations in the laminar cortical circuit. Surprisingly, neurons undergoing remapping exhibit sensitivity to two punctate locations in visual space. Remapping is also accompanied by a transient sharpening of orientation tuning. Taken together, these results shed light on the spatiotemporal dynamics of remapping and its ubiquitous prevalence in the early visual cortex, and force us to revise current models of perceptual stability.

4.
Front Neural Circuits ; 12: 41, 2018.
Article in English | MEDLINE | ID: mdl-29872379

ABSTRACT

Understanding the neural mechanisms underlying human cognition and determining the causal factors for the development of brain pathologies are among the greatest challenges for society. Electrophysiological recordings offer remarkable observations of brain activity as they provide highly precise representations of information coding in both temporal and spatial domains. With the development of genetic tools over the last decades, mice have been a key model organism in neuroscience. However, conducting chronic in vivo electrophysiology in awake, behaving mice remains technically challenging, and this difficulty prevents many research teams from acquiring critical recordings in their mouse models. Behavioral training, implant fabrication, brain surgery, data acquisition and data analysis are all required steps that must be mastered in order to perform cutting-edge experiments in systems neuroscience. Here, we present a new method that simplifies the construction of a drivable and multi-task electrophysiological recording implant without loss of flexibility and recording power. The hybrid-drive combining optogenetics, pharmacology and electrophysiology (HOPE) can support up to 16 tetrodes, attached to a single drive mechanism, organized in two bundles of eight tetrodes, allowing recordings in two different mouse brain regions simultaneously with two optical fibers for optogenetic manipulation or two injection cannulas for drug-delivery experiments. Because it can be printed with a latest-generation desktop 3D printer, the production cost is low compared to classical electrophysiology implants, and it can be built within a few hours. The HOPE implant is also reconfigurable to specific needs as it has been created in a computer-aided design (CAD) software and all the files used for its construction are open-source.


Subject(s)
Brain/surgery , Electrodes, Implanted , Electrophysiological Phenomena/physiology , Optogenetics , Animals , Behavior, Animal/physiology , Electrophysiology/methods , Mice , Optogenetics/instrumentation , Optogenetics/methods , Wakefulness/physiology
5.
ACS Appl Mater Interfaces ; 8(16): 10234-42, 2016 04 27.
Article in English | MEDLINE | ID: mdl-27046460

ABSTRACT

Successful control of homogeneous and complete coating of graphene or graphene-based composites with well-defined metal organic framework (MOF) layers is a great challenge. Herein, novel magnetic graphene MOF composites were constructed via a simple strategy for self-assembly of well-distributed, dense, and highly porous MOFs on both sides of graphene nanosheets. Graphene functionalized with magnetic nanoparticles and carboxylic groups on both sides was explored as the backbone and template to direct the controllable self-assembly of MOFs. The prepared composite materials have a relatively high specific surface area (345.4 m(2) g(-1)), and their average pore size is measured to be 3.2 nm. Their relatively high saturation magnetization (23.8 emu g(-1)) indicates their strong magnetism at room temperature. Moreover, the multifunctional composite was demonstrated to be a highly effective affinity material in selective extraction and separation of low-concentration biomolecules from biological samples, in virtue of the size-selection property of the unique porous structure and the excellent affinity of the composite materials. Besides providing a solution for the construction of well-defined functional graphene-based MOFs, this work could also contribute to selective extraction of biomolecules, in virtue of the universal affinity between immobilized metal ions and biomolecules.


Subject(s)
Nanocomposites , Graphite , Magnetics , Metals , Porosity
SELECTION OF CITATIONS
SEARCH DETAIL
...