Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Plant Physiol ; 192(1): 601-615, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36715647

ABSTRACT

Plant immunity relies on the perception of microbe-associated molecular patterns (MAMPs) from invading microbes to induce defense responses that suppress attempted infections. It has been proposed that MAMP-triggered immunity (MTI) suppresses bacterial infections by suppressing the onset of bacterial virulence. However, the mechanisms by which plants exert this action are poorly understood. Here, we showed that MAMP perception in Arabidopsis (Arabidopsis thaliana) induces the accumulation of free amino acids in a salicylic acid (SA)-dependent manner. When co-infiltrated with Glutamine and Serine, two of the MAMP-induced highly accumulating amino acids, Pseudomonas syringae pv. tomato DC3000 expressed low levels of virulence genes and failed to produce robust infections in otherwise susceptible plants. When applied exogenously, Glutamine and Serine directly suppressed bacterial virulence and growth, bypassing MAMP perception and SA signaling. In addition, an increased level of endogenous Glutamine in the leaf apoplast of a gain-of-function mutant of Glutamine Dumper-1 rescued the partially compromised bacterial virulence- and growth-suppressing phenotype of the SA-induced deficient-2 (sid2) mutant. Our data suggest that MTI suppresses bacterial infections by delaying the onset of virulence with an excess of amino acids at the early stages of infection.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Amino Acids/metabolism , Virulence/genetics , Glutamine/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Plant Immunity , Serine/metabolism , Pseudomonas syringae , Plant Diseases/microbiology , Salicylic Acid/metabolism , Gene Expression Regulation, Plant
2.
PeerJ ; 8: e8535, 2020.
Article in English | MEDLINE | ID: mdl-32266110

ABSTRACT

BACKGROUND: During their long evolution, Synechocystis sp. PCC6803 developed a remarkable capacity to acclimate to diverse environmental conditions. In this study, Raman spectroscopy and Raman chemometrics tools (RametrixTM) were employed to investigate the phenotypic changes in response to external stressors and correlate specific Raman bands with their corresponding biomolecules determined with widely used analytical methods. METHODS: Synechocystis cells were grown in the presence of (i) acetate (7.5-30 mM), (ii) NaCl (50-150 mM) and (iii) limiting levels of MgSO4 (0-62.5 mM) in BG-11 media. Principal component analysis (PCA) and discriminant analysis of PCs (DAPC) were performed with the RametrixTM LITE Toolbox for MATLABⓇ. Next, validation of these models was realized via RametrixTM PRO Toolbox where prediction of accuracy, sensitivity, and specificity for an unknown Raman spectrum was calculated. These analyses were coupled with statistical tests (ANOVA and pairwise comparison) to determine statistically significant changes in the phenotypic responses. Finally, amino acid and fatty acid levels were measured with well-established analytical methods. The obtained data were correlated with previously established Raman bands assigned to these biomolecules. RESULTS: Distinguishable clusters representative of phenotypic responses were observed based on the external stimuli (i.e., acetate, NaCl, MgSO4, and controls grown on BG-11 medium) or its concentration when analyzing separately. For all these cases, RametrixTM PRO was able to predict efficiently the corresponding concentration in the culture media for an unknown Raman spectra with accuracy, sensitivity and specificity exceeding random chance. Finally, correlations (R > 0.7) were observed for all amino acids and fatty acids between well-established analytical methods and Raman bands.

3.
PeerJ ; 8: e8585, 2020.
Article in English | MEDLINE | ID: mdl-32266111

ABSTRACT

BACKGROUND: Synechocystis sp. PCC6803 is a model cyanobacterium that has been studied widely and is considered for metabolic engineering applications. Here, Raman spectroscopy and Raman chemometrics (Rametrix™) were used to (i) study broad phenotypic changes in response to growth conditions, (ii) identify phenotypic changes associated with its circadian rhythm, and (iii) correlate individual Raman bands with biomolecules and verify these with more accepted analytical methods. METHODS: Synechocystis cultures were grown under various conditions, exploring dependencies on light and/or external carbon and nitrogen sources. The Rametrix™ LITE Toolbox for MATLAB® was used to process Raman spectra and perform principal component analysis (PCA) and discriminant analysis of principal components (DAPC). The Rametrix™ PRO Toolbox was used to validate these models through leave-one-out routines that classified a Raman spectrum when growth conditions were withheld from the model. Performance was measured by classification accuracy, sensitivity, and specificity. Raman spectra were also subjected to statistical tests (ANOVA and pairwise comparisons) to identify statistically relevant changes in Synechocystis phenotypes. Finally, experimental methods, including widely used analytical and spectroscopic assays were used to quantify the levels of glycogen, fatty acids, amino acids, and chlorophyll a for correlations with Raman data. RESULTS: PCA and DAPC models produced distinct clustering of Raman spectra, representing multiple Synechocystis phenotypes, based on (i) growth in the presence of 5 mM glucose, (ii) illumination (dark, light/dark [12 h/12 h], and continuous light at 20 µE), (iii) nitrogen deprivation (0-100% NaNO3 of native BG-11 medium in continuous light), and (iv) throughout a 24 h light/dark (12 h/12 h) circadian rhythm growth cycle. Rametrix™ PRO was successful in identifying glucose-induced phenotypes with 95.3% accuracy, 93.4% sensitivity, and 96.9% specificity. Prediction accuracy was above random chance values for all other studies. Circadian rhythm analysis showed a return to the initial phenotype after 24 hours for cultures grown in light/dark (12 h/12 h) cycles; this did not occur for cultures grown in the dark. Finally, correlation coefficients (R > 0.7) were found for glycogen, all amino acids, and chlorophyll a when comparing specific Raman bands to other experimental results.

4.
Bio Protoc ; 8(14): e2944, 2018 Jul 20.
Article in English | MEDLINE | ID: mdl-34395757

ABSTRACT

CRISPR/Cas9 made targeted mutagenesis and genome editing possible for many plant species. One of the ways that the endonuclease is used for plant genetics is the creation of loss-of-function mutants, which typically result from erroneous DNA repair through non-homologous end joining (NHEJ) pathway. The majority of erroneous repair events results in single-bp insertion or deletion. While single-bp insertions or deletions (indels) effectively destroy the function of protein-coding genes through frameshift, detection is difficult due to the small size shift. High-resolution melting temperature analysis allows quick detection, and it does not require any additional pipetting steps after the PCR amplification of the region of interest. In this protocol, we will describe the steps required for the analysis of potential homozygous mutants.

5.
Front Plant Sci ; 8: 1171, 2017.
Article in English | MEDLINE | ID: mdl-28725235

ABSTRACT

CRISPR-Cas9 system rapidly became an indispensable tool in plant biology to perform targeted mutagenesis. A CRISPR-Cas9-mediated double strand break followed by non-homologous end joining (NHEJ) repair most frequently results in a single base pair deletion or insertions (indels), which is hard to detect using methods based on enzymes that detect heteroduplex DNA. In addition, somatic tissues of the T1 generation inevitably contain a mosaic population, in which the portion of cells carrying the mutation can be too small to be detected by the enzyme-based methods. Here we report an optimized experimental protocol for detecting Arabidopsis mutants carrying a CRISPR-Cas9 mediated mutation, using high-resolution melting (HRM) curve analysis. Single-base pair insertion or deletion (indel) can be easily detected using this method. We have also examined the detection limit for the template containing a one bp indel compared to the WT genome. Our results show that <5% of mutant DNA containing one bp indel can be detected using this method. The vector developed in this study can be used with a Gateway technology-compatible derivative of pCUT vectors, with which off-target mutations could not be detected even by a whole genome sequencing.

6.
Food Sci Nutr ; 5(3): 497-503, 2017 05.
Article in English | MEDLINE | ID: mdl-28572934

ABSTRACT

Chili peppers (Capsicum spp.) may possess antibacterial properties and have potential to be used in foods as antimicrobial. The complete chili pepper extract should be evaluated to determine which compounds are responsible for the antimicrobial activity. Extraction of compounds from the pepper is completed using a solvent. The type of solvent used for extraction influences which compounds are isolated, therefore the best extraction method needs to be determined. The purpose of this study was to identify which solvent is most successful at extracting unknown antibacterial compounds from jalapeño peppers. Fresh jalapeño peppers were chopped, weighed, and blended with a solvent (sterilized hot water, 70% methanol, 95% methanol, 70% ethanol, or 95% ethanol) at a 1:1 ratio (g/g) until the mixture was homogenized, followed by shaking for 15 min. The slurry was centrifuged; supernatant was removed and used for antibacterial testing against Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella enterica. The diameter of growth inhibition was measured and statistically evaluated using ANOVA to determine the extract with the greatest antimicrobial activity. Solvents were tested alone as a control. There was greater bacterial inhibition from extracts created with methanol and ethanol than hot water. Listeria monocytogenes was significantly more susceptible to the extracts than E. coli or Salmonella isolates. Each solvent extract was then analyzed using high-performance liquid chromatography (HPLC) and fractions (A-G) were collected and used for subsequent disk diffusion analysis against L. monocytogenes. Fractions E and F (eluded between 20 and 30 min) exhibited the most antibacterial activity. There were no differences between solvents used (p = .05). Further investigation into specific compounds within these extracts will be completed in the future.

7.
Food Sci Nutr ; 5(3): 730-738, 2017 05.
Article in English | MEDLINE | ID: mdl-28572963

ABSTRACT

Capsicum annuum fruits have been investigated for antimicrobial activity in a number of studies. Capsaicin or other cinnamic acid pathway intermediates are often suggested to be the antimicrobial component, however there are conflicting results. No research has specifically fractionated jalapeño pepper (Capsicum annuum var. annuum) extract to isolate and identify compound(s) responsible for inhibition. In this study, fractions were collected from jalapeño pepper extracts using reverse-phase HPLC and tested for antibacterial activity using the disk diffusion method. Following initial fractionation, two fractions (E and F) displayed antibacterial activity against all three pathogens (p > .05). Commercial standards were screened to determine when they elude and it was found that capsaicin elutes at the same time as fraction E. Fractions E and F were subject to further HPLC fractionation and antibacterial analysis using two methods. The only fraction to display clear inhibition using both was fraction E1, inhibiting the growth of L. monocytogenes. Fraction E1 was analyzed using HPLC-MS. The resulting mass spectra revealed fraction E1 contained compounds belonging to a group of C. annuum-specific compounds known as capsianosides. Limited research is available on antibacterial activity of capsianosides, and a pure commercial standard is not available. In order to confirm the potential antimicrobial activity of the compound(s) isolated, methods need to be developed to isolate and purify capsianosides specifically from jalapeño peppers.

8.
Front Plant Sci ; 6: 593, 2015.
Article in English | MEDLINE | ID: mdl-26300894

ABSTRACT

Intracellular amino acid transport across plant membranes is critical for metabolic pathways which are often split between different organelles. In addition, transport of amino acids across the plasma membrane enables the distribution of organic nitrogen through the saps between leaves and developing organs. Amino acid importers have been studied for more than two decades, and their role in this process is well-documented. While equally important, amino acid exporters are not well-characterized. The over-expression of GDU1, encoding a small membrane protein with one transmembrane domain, leads to enhancement of amino acid export by Arabidopsis cells, glutamine secretion at the leaf margin, early senescence and size reduction of the plant, possibly caused by the stimulation of amino acid exporter(s). Previous work reported the identification of suppressor mutations of the GDU1 over-expression phenotype, which affected the GDU1 and LOG2 genes, the latter encoding a membrane-bound ubiquitin ligase interacting with GDU1. The present study focuses on the characterization of three additional suppressor mutations affecting GDU1. Size, phenotype, glutamine transport and amino acid tolerance were recorded for recapitulation plants and over-expressors of mutagenized GDU1 proteins. Unexpectedly, the over-expression of most mutated GDU1 led to plants with enhanced amino acid export, but failing to display secretion of glutamine and size reduction. The results show that the various effects triggered by GDU1 over-expression can be dissociated from one another by mutagenizing specific residues. The fact that these residues are not necessarily conserved suggests that the diverse biochemical properties of the GDU1 protein are not only born by the characterized transmembrane and VIMAG domains. These data provide a better understanding of the structure/function relationships of GDU1 and may enable modifying amino acid export in plants without detrimental effects on plant fitness.

9.
J Food Prot ; 75(2): 382-8, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22289602

ABSTRACT

There is a lack of general knowledge regarding the behavior of foodborne pathogenic bacteria associated with jalapeño peppers. The survival and growth behaviors of Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella enterica on the interior and exterior of jalapeño peppers were determined under different storage conditions. Jalapeños were inoculated with a five-strain cocktail of L. monocytogenes, E. coli O157:H7, or S. enterica on the intact external surface, injured external surface, or intact internal cavity of jalapeño peppers and held at 7 or 12°C for a period of 14 days. Populations of each pathogen were determined at 0, 1, 2, 5, 7 10, and 14 days throughout storage. The uninjured, intact external surface of jalapeño peppers did not support growth of the pathogens tested under both storage conditions, with the exception of L. monocytogenes at 12°C. Populations of E. coli and S. enterica declined on the external injured surface of peppers at 7°C, but populations of L. monocytogenes remained consistent throughout the length of storage. At 12°C, L. monocytogenes and S. enterica populations increased throughout storage, and E. coli populations remained unchanged on injured surfaces. The uninjured internal cavity of the jalapeño supported growth of all pathogens at 12°C. Overall, L. monocytogenes was the microorganism most capable of growth and survival in association with jalapeño peppers for the scenarios tested. Results emphasize the importance of jalapeño pepper quality and proper storage conditions in preventing or reducing pathogen survival and growth.


Subject(s)
Capsicum/microbiology , Escherichia coli O157/growth & development , Listeria monocytogenes/growth & development , Salmonella enterica/growth & development , Bacterial Adhesion/physiology , Colony Count, Microbial , Consumer Product Safety , Escherichia coli O157/physiology , Food Contamination/analysis , Food Contamination/prevention & control , Food Microbiology , Food Preservation/methods , Listeria monocytogenes/physiology , Microbial Viability , Salmonella enterica/physiology , Temperature , Time Factors
10.
Physiol Behav ; 105(2): 276-82, 2012 Jan 18.
Article in English | MEDLINE | ID: mdl-21824486

ABSTRACT

Unfavorable nutritional conditions during early developmental periods may cause neuronal network remodeling in the hypothalamus, which influences subsequent adaptability to those same stressful conditions. Alterations in hypothalamic plasticity as a result of neuronal remodeling are achieved by variations in the repertoire of proteins expressed via gene transcriptional activation or repression, both of which are modulated by histone methylation status. This study demonstrates that fasting had a stimulatory effect on dimethylation and trimethylation of histone 3 at lysine 27 (H3K27) in preoptic/anterior hypothalamus (PO/AH) of 3-day-old chicks. The expression of enhancer of zeste 2 (EZH2), a H3K27-specific histone methyltransferase (HMT), was significantly increased by fasting in the paraventricular nucleus (PVN) and PO/AH, which is consistent with the upregulation of H3K27 dimethylation and trimethylation. Furthermore, in the PVN, corticotrophin-releasing hormone (CRH) mRNA expression was significantly inhibited, while mRNA expressions of thyrotropin-releasing hormone (TRH) and type 2 deiodinase (D2) were significantly stimulated by fasting. These findings highlight the potential role of H3K27 methylation status in early feed stress responses in chicks and may be indicative of an epigenetic mechanism for later adaptation to feed intake stress.


Subject(s)
Fasting/physiology , Histones/metabolism , Hypothalamus/metabolism , Animals , Animals, Newborn , Chickens , Corticotropin-Releasing Hormone/genetics , Corticotropin-Releasing Hormone/metabolism , Histone Methyltransferases , Histone-Lysine N-Methyltransferase/metabolism , Histones/genetics , Iodide Peroxidase/genetics , Iodide Peroxidase/metabolism , Lysine/metabolism , Male , Methylation , RNA, Messenger , Thyrotropin-Releasing Hormone/genetics , Thyrotropin-Releasing Hormone/metabolism , Iodothyronine Deiodinase Type II
SELECTION OF CITATIONS
SEARCH DETAIL
...