Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Dairy Sci ; 97(9): 5337-44, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25022681

ABSTRACT

The segment of the world population showing permanent or temporary lactose intolerance is quite significant. Because milk is a widely consumed food with an high nutritional value, technological alternatives have been sought to overcome this dilemma. Microfiltration combined with pasteurization can not only extend the shelf life of milk but can also maintain the sensory, functional, and nutritional properties of the product. This studied developed a pasteurized, microfiltered, lactose hydrolyzed (delactosed) skim milk (PMLHSM). Hydrolysis was performed using ß-galactosidase at a concentration of 0.4mL/L and incubation for approximately 21h at 10±1°C. During these procedures, the degree of hydrolysis obtained (>90%) was accompanied by evaluation of freezing point depression, and the remaining quantity of lactose was confirmed by HPLC. Milk was processed using a microfiltration pilot unit equipped with uniform transmembrane pressure (UTP) ceramic membranes with a mean pore size of 1.4 µm and UTP of 60 kPa. The product was submitted to physicochemical, microbiological, and sensory evaluations, and its shelf life was estimated. Microfiltration reduced the aerobic mesophilic count by more than 4 log cycles. We were able to produce high-quality PMLHSM with a shelf life of 21 to 27d when stored at 5±1°C in terms of sensory analysis and proteolysis index and a shelf life of 50d in regard to total aerobic mesophile count and titratable acidity.


Subject(s)
Filtration , Lactose/analysis , Milk/chemistry , Pasteurization , Animals , Ceramics , Chemical Phenomena , Cold Temperature , Colony Count, Microbial , Enterobacteriaceae/isolation & purification , Food Contamination/analysis , Food Microbiology , Food Storage , Hydrolysis , Milk/microbiology , Pressure , Salmonella/isolation & purification , Staphylococcus/isolation & purification , Taste , beta-Galactosidase/metabolism
2.
Hum Mov Sci ; 32(5): 1086-96, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23186610

ABSTRACT

The Animal Fun program was designed to enhance the motor ability of young children by imitating the movements of animals in a fun, inclusive setting. The efficacy of this program was investigated through a randomized controlled trial using a multivariate nested cohort design. Pre-intervention scores were recorded for 511 children aged 4.83 years to 6.17 years (M=5.42 years, SD=3.58 months). Six control and six intervention schools were compared 6 months later following the intervention, and then again at 18 months after the initial testing when the children were in their first school year. Changes in motor performance were examined using the Bruininks-Oseretsky Test of Motor Proficiency short form. Data were analyzed using multi-level-mixed effects linear regression. A significant Condition×Time interaction was found, F(2,1219)=3.35, p=.035, demonstrating that only the intervention group showed an improvement in motor ability. A significant Sex×Time interaction was also found, F(2,1219)=3.84, p=.022, with boys improving over time, but not girls. These findings have important implications for the efficacy of early intervention of motor skills and understanding the differences in motor performance between boys and girls.


Subject(s)
Behavior, Animal , Child Development , Imitative Behavior , Models, Educational , Motor Skills , Psychomotor Performance , Animals , Child , Child, Preschool , Early Intervention, Educational , Female , Humans , Male , Motor Activity , Self Concept , Sex Factors , Systems Theory , Western Australia
SELECTION OF CITATIONS
SEARCH DETAIL
...