Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Int J Mol Sci ; 24(2)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36674778

ABSTRACT

Genetics for blood pressure (BP) in human and animals has been partitioned into two separate specialties. However, this divide is mechanistically-misleading. BP physiology is mechanistically participated by products of quantitative trait loci (QTLs). The key to unlocking its mechanistic mystery lies in the past with mammalian ancestors before humans existed. By pivoting from effects to causes, physiological mechanisms determining BP by six QTLs have been implicated. Our work relies on congenic knock-in genetics in vivo using rat models, and has reproduced the physiological outcome based on a QTL being molecularly equal to one gene. A gene dose for a QTL is irrelevant to physiological BP controls in causation. Together, QTLs join one another as a group in modularized Mendelian fashion to achieve polygenicity. Mechanistically, QTLs in the same module appear to function in a common pathway. Each is involved in a different step in the pathway toward polygenic hypertension. This work has implicated previously-concealed components of these pathways. This emerging concept is a departure from the human-centric precept that the level of QTL expressions, not physiology, would ultimately determine BP. The modularity/pathway paradigm breaks a unique conceptual ground for unravelling the physiological mechanisms of polygenic and quantitative traits like BP.


Subject(s)
Hypertension , Humans , Rats , Animals , Blood Pressure/genetics , Rats, Inbred Dahl , Hypertension/genetics , Quantitative Trait Loci , Gene Expression , Mammals/genetics
2.
PLoS One ; 15(7): e0235756, 2020.
Article in English | MEDLINE | ID: mdl-32702059

ABSTRACT

Genome-wide association studies (GWAS) have routinely detected human quantitative trait loci (QTLs) for complex traits. Viewing that most GWAS single nucleotide polymorphisms (SNPs) are found in non-coding regions unrelated to the physiology of a polygenic trait of interest, a vital question to answer is whether or not any of these SNPs can functionally alter the phenotype with which it is associated. The study of blood pressure (BP) is a case in point. Conserved mechanisms in controlling BP by modularity is now unifying differing mammalian orders in that understanding mechanisms in rodents is tantamount to revealing the same in humans, while overcoming experimental limitations imposed by human studies. As a proof of principle, we used BP QTLs from Dahl salt-sensitive rats (DSS) as substitutes to capture distinct human functional orthologs. 3 DSS BP QTLs are located into distinct genome regions and correspond to several human GWAS genes. Each of the QTLs independently exerted a major impact on BP in vivo. BP was functionally changed by normotensive alleles from each of these QTLs, and yet, the human GWAS SNPs do not exist in the rat. They cannot be responsible for physiological alterations in BP caused by these QTLs. These SNPs are genome emblems for QTLs nearby, rather than being QTLs per se, since they only emerged during primate evolution after BP-regulating mechanisms have been established. We then identified specific mutated coding domains that are conserved between rodents and humans and that may implicate different steps of a common pathway or separate pathways.


Subject(s)
Blood Pressure/genetics , Genome-Wide Association Study , Hypertension/genetics , Hypertension/prevention & control , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Animals , Blood Pressure Determination , Chromosome Mapping , Humans , Male , Phenotype , Rats , Rats, Inbred Dahl
3.
Can J Cardiol ; 36(5): 756-763, 2020 05.
Article in English | MEDLINE | ID: mdl-32389346

ABSTRACT

BACKGROUND: Most signals from human genome-wide association studies (GWAS) for blood pressure (BP) are single-nucleotide polymorphisms (SNPs). It was unknown if such SNPs can functionally affect BP. Because BP is similar between humans and rodents, unraveling basic mechanisms from rodents can reveal the same BP-modulating mechanisms in humans originating from their common ancestors while overcoming limitations in human epidemiology. METHODS: For the first time, we used quantitative trait loci (QTLs) from Dahl salt-sensitive (DSS) rats as functional surrogates to capture human BP QTLs. RESULTS: A total of 107 human GWAS genes may be classified into 2 common pathways of hypertension pathogeneses. Among them, 4 DSS BP QTLs correspond to 4 human GWAS genes. Each of them independently showed a major impact on BP in vivo and thus functional redundancy. BP was altered by each of these 4 QTLs, but human GWAS SNPs marking these QTLs do not exist in the rat. They cannot be responsible for physiological changes in BP caused by these QTLs and are genome signposts marking positions of the QTLs nearby, rather than being QTLs themselves. These SNPs appeared during primate evolution, independently of BP regulation. Because the functional dosage of QTLs, not their gene dose, determined hypertension pathogenesis, a role for the noncoding GWAS SNPs in BP via regulating gene expressions can be discounted. CONCLUSIONS: The human QTLs may function in a common pathway, with each involved in a different step in the pathway leading to BP control. These results may be conceptually paradigm shifting.


Subject(s)
Blood Pressure/genetics , Hypertension/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Animals , Animals, Congenic , Disease Models, Animal , Genome-Wide Association Study , Intracellular Signaling Peptides and Proteins/genetics , Nuclear Proteins/genetics , Rats, Inbred Dahl
4.
J Hum Hypertens ; 34(6): 432-439, 2020 06.
Article in English | MEDLINE | ID: mdl-32123286

ABSTRACT

Large numbers of quantitative trait loci (QTLs) for blood pressure (BP) exist and have long been thought to function by accumulating their individual miniscule effects. Recent experimental evidence in the functional biology of BP control has tested this intuitive assumption. A new paradigm has emerged that BP is biologically determined in modularity by multiple QTLs. Functionally, when a master regulator is taken out, distinct epistatic modules organize biological 'blocks' into a genetic architecture, and serve as basic functional cores from which numerous QTLs act together to physiologically formulate BP. An epistatic module refers to the grouping of QTLs that perform their functions epistatically to one another and influence BP as a group. The modularity mechanism framework indicates that BP as a quantitatively-measured trait is not cumulatively determined and implies that the QTLs in the same epistatic module may participate in the same pathway leading to the BP control, and the QTLs from separate epistatic modules may act in divergent but parallel pathways. This mechanistic conceptualization and subsequent validations synergize with anticipated demands from current human epidemiological studies, since the outcome from them primarily implicates single nucleotide polymorphisms with unknown functions. Eventually, functional understandings of the human results have to be realized by their pathogenic directionality and mechanisms biologically controlling BP.


Subject(s)
Hypertension , Quantitative Trait Loci , Animals , Blood Pressure/genetics , Epistasis, Genetic , Humans , Hypertension/genetics , Polymorphism, Single Nucleotide , Rats , Rats, Inbred Dahl
5.
J Hypertens ; 38(2): 322-331, 2020 02.
Article in English | MEDLINE | ID: mdl-31584514

ABSTRACT

OBJECTIVES: Blood pressure (BP) is comparable among different mammalian orders, despite their evolution divergence. Because of it, fundamental mechanisms should connect humans and rodents by their shared BP physiology. We hypothesized that similar quantitative trait loci (QTLs) function in both humans and rodents in controlling BP. METHODS: We utilized inbred hypertensive Dahl salt-sensitive rats (DSS) as a functional proxy to evaluate the relevance of human genome-wide association studies (GWAS) genes in BP regulation. RESULTS: First, three DSS BP QTLs functionally captured three specific human GWAS genes. Each QTL has a major biological impact, not a miniscule effect, on BP, in causation by function. Second, noncoding single-nucleotide polymorphisms (SNPs) found in GWAS are by products of primate evolution, instead of mechanistic drivers in regulating BP, because their absence did not impact on BP of mammals. Third, a missense mutation, rather than a noncoding GWAS SNP marking it nearby, is the priority functional basis for a given QTL. Depleting such a noncoding GWAS SNP had no impact, whereas eliminating the muscarinic cholinergic receptor 3 (M3R) signaling decreased BP. Finally, epistatic modularity biologically organizes multiple QTLs with redundant functions, and is the genetic mechanism that modulates the BP homeostasis when QTLs function collectively. CONCLUSIONS: Two pathogenic pathways of hypertension biologically unify mechanisms of BP regulations for humans and their functional surrogates. The mechanism-based biology for the M3R-mediated pathway in raising BP has established M3R as a novel pathogenesis-driven target for antihypertension therapies.


Subject(s)
Blood Pressure/genetics , Hypertension/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Alleles , Animals , Disease Models, Animal , Genome-Wide Association Study , Humans , Hypertension/physiopathology , Rats , Rats, Inbred Dahl , Receptor, Muscarinic M3
6.
Can J Cardiol ; 35(5): 661-670, 2019 05.
Article in English | MEDLINE | ID: mdl-30955929

ABSTRACT

BACKGROUND: Multiple quantitative trait loci for blood pressure (BP) have been localized throughout human and rodent genomes. Few of them have been functionally identified especially in humans, and little is known about their pathogenic directionality when identified. We focused on Chrm3 encoding the muscarinic cholinergic receptor 3 (M3R) as the causal gene for C17QTL1 in the Dahl salt-sensitive rat model. METHODS AND RESULTS: Congenic knock-ins, gene-specific knockout, and ex vivo and in vivo function studies were applied in the Dahl salt-sensitive rat model of polygenic hypertension. A Chrm3 missense T1667C mutation in the last intracellular domain functionally correlated with a rise in BP increased the M3R signalling and resensitization, and adrenal epinephrogenesis. Gene targeting that abolished the M3R function without affecting any of noncoding Chrm3 variants caused a decrease in BP, indicating that the M3R-mediated signalling promotes hypertension. In contrast, removing 8 amino acids from the M3R first extracellular loop had no effect on BP. CONCLUSIONS: The M3R-specialized signalling constitutes a new pathway of hypertension pathogenesis within the context of a polygenic and quantitative trait. Increased epinephrine in the circulation and secreted from the adrenal glands are suggestive of a molecular mechanism partially mediating M3R to promote hypertension. The structure-function relationships for various M3R domains in their effects on BP pave the way for identifying missense mutations that impact functions on BP as potential diagnostic targets.


Subject(s)
Hypertension/genetics , Mutation, Missense , Receptor, Muscarinic M3/genetics , Signal Transduction/genetics , Adrenal Glands/metabolism , Animals , Animals, Congenic , Disease Models, Animal , Epinephrine/metabolism , Gene Knock-In Techniques , Gene Knockout Techniques , Quantitative Trait Loci/genetics , Rats, Inbred Dahl
7.
Hypertension ; 72(3): 755-764, 2018 09.
Article in English | MEDLINE | ID: mdl-30354759

ABSTRACT

Multiple quantitative trait loci for blood pressure (BP) are localized in humans and rodent models. Model studies have not only produced human quantitative trait loci homologues but also provided unforeseen mechanistic insights into the function modality of quantitative trait loci actions. Presently, congenic knockins, gene-specific knockout, and in vitro and in vivo function studies were used in a rat model of polygenic hypertension, DSS (Dahl salt sensitive) rats. One gene previously unknown in regulating BP was detected with 1 structural mutation(s) for each of 2 quantitative trait loci classified into 2 separate epistatic modules 1 and 3. C17QTL1 in epistatic module 2 was identified to be the gene Chrm3 encoding the M3R (muscarinic cholinergic 3 receptor), since a single function-enhancing M3RT556M conversion correlated with elevated BP. To definitively prove that the enhanced M3R function is responsible for BP changes by the DSS alleles of C17QTL1, we generated a Chrm3 gene-specific rat knockout. We observed a reduction in BP without tachycardia in both sexes, regardless of the amount of dietary salt, and an improvement in diastolic and kidney dysfunctions. All occurred in spite of a significant reduction in M3R-dependent vasodilation. The previously seen sexual dimorphism for C17QTL1 on BP disappeared in the absence of M3R. A Chrm3-coding variation increased M3R signaling, correlating with higher BP. Removing the M3R signaling led to a decrease in BP and improvements in cardiac and renal malfunctions. A novel pathogenic pathway accounted for a portion of polygenic hypertension and has implications in applying new diagnostic and therapeutic uses against hypertension and diastolic dysfunction.


Subject(s)
Blood Pressure/genetics , Hypertension/genetics , Quantitative Trait Loci/genetics , Receptor, Muscarinic M3/genetics , Amino Acid Sequence , Animals , Animals, Congenic , Base Sequence , Disease Models, Animal , Female , Gene Knockout Techniques , Humans , Male , Rats, Inbred Dahl , Receptor, Muscarinic M3/metabolism , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid , Signal Transduction/genetics
8.
Clin Exp Hypertens ; 38(6): 533-40, 2016.
Article in English | MEDLINE | ID: mdl-27391979

ABSTRACT

Gene discovery in animal models may lead to the revelation of therapeutic targets for essential hypertension as well as mechanistic insights into blood pressure (BP) regulation. Our aim was to identify a disease-causing gene for a component of polygenic hypertension contrasting inbred hypertensive Dahl salt-sensitive (DSS) and normotensive Lewis rats. The chromosome segment harboring a quantitative trait locus (QTL), C16QTL, was first isolated from the rat genome via congenic strains. A candidate gene responsible for C16QTL causing a BP difference between DSS and Lewis rats was then identified using molecular analyses combining our independently-conducted total genome and gene-specific sequencings. The retinoblastoma-associated protein 140 (Rap140)/family with sequence similarity 208 member A (Fam208a) is the only candidate gene supported to be C16QTL among three genes in genome block 1 present in the C16QTL-residing interval. A mode of its actions could be to influence the expressions of genes that are downstream in a pathway potentially leading to BP regulation such as that encoding the solute carrier family 7 (cationic amino acid transporter, y+ system) member 12 (Slc7a12), which is specifically expressed in kidneys. Thus, Rap140/Fam208a probably encoding a transcription factor is the strongest candidate for a novel BP QTL that acts via a putative Rap140/Fam208a-Slc7a12-BP pathway. These data implicate a premier physiological role for Rap140/Fam208 beyond development and a first biological function for the Slc7a12 protein in any organism.


Subject(s)
Blood Pressure/genetics , Hypertension/genetics , Retinoblastoma Protein/genetics , Animals , Essential Hypertension , Genetic Association Studies , Humans , Male , Mutation , Quantitative Trait Loci , Rats , Rats, Inbred Dahl , Rats, Inbred Lew
9.
PLoS One ; 11(4): e0151399, 2016.
Article in English | MEDLINE | ID: mdl-27064407

ABSTRACT

Multiple quantitative trait loci (QTLs) for blood pressure (BP) have been detected in rat models of human polygenic hypertension. Great challenges confronting us include molecular identifications of individual QTLs. We first defined the chromosome region harboring C1QTL1 to a segment of 1.9 megabases that carries 9 genes. Among them, we identified the gene encoding the fibronectin type III domain containing 1 protein (Fndc1)/activator of G protein signaling 8 (Ags8) to be the strongest candidate for C1QTL1, since numerous non-synonymous mutations are found. Moreover, the 5' Fndc1/Ags8 putative promoter contains numerous mutations that can account for its differential expression in kidneys and the heart, prominent organs in modulating BP, although the Fndc1/Ags8 protein was not detectable in these organs under our experimental conditions. This work has provided the premier evidence that Fndc1/Ags8 is a novel and strongest candidate gene for C1QTL1 without completely excluding other 8 genes in the C1QTL1-residing interval. If proven true by future in vivo function studies such as single-gene Fndc1/Ags8 congenics, transgenesis or targeted-gene modifications, it might represent a part of the BP genetic architecture that operates in the upstream position distant from the end-phase physiology of BP control, since it activates a Gbetagamma component in a signaling pathway. Its functional role could validate the concept that a QTL in itself can influence BP 'indirectly' by regulating other genes downstream in a pathway. The elucidation of the mechanisms initiated by Fndc/Ags8 variations will reveal novel insights into the BP modulation via a regulatory hierarchy.


Subject(s)
Blood Pressure/genetics , Hypertension/genetics , Intracellular Signaling Peptides and Proteins/genetics , Mutation/genetics , Quantitative Trait Loci , Animals , Disease Models, Animal , Gene Expression Profiling , Genome , High-Throughput Nucleotide Sequencing , Humans , Hypertension/pathology , Promoter Regions, Genetic/genetics , Rats , Rats, Inbred Lew , Signal Transduction
10.
J Hypertens ; 33(9): 1791-801; discussion 1801, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26103128

ABSTRACT

OBJECTIVES: Multiple quantitative trait loci (QTLs) for blood pressure (BP) have been detected in rat models of human polygenic hypertension. They influence BP physiologically via epistatic modules. Little is known about the causal genes and virtually nothing is known on modularized mechanisms governing their regulatory connections. METHODS AND RESULTS: Two genes responsible for two individual BP QTLs on rat Chromosome 18 have been identified that belong to the same epistatic module. Treacher Collins-Franceschetti syndrome 1 (Tcof1) gene is the only function candidate for C18QTL3. Haloacid dehalogenase like hydrolase domain containing 2 (Hdhd2), although a gene of previously unknown function, is C18QTL4, and encodes a newly identified phosphatase. The current work has provided the premier evidence that Hdhd2/C18QTL4 and Tcof1/C18QTL3 may be involved in polygenic hypertension. Hdhd2/C18QTL4 can regulate the function of Tcof1/C18QTL3 via de-phosphorylation, and, for the first time, furbishes a molecular mechanism in support of a genetically epistatic hierarchy between two BP QTLs, and thus authenticates the epistasis-common pathway paradigm. CONCLUSION: The pathway initiated by Hdhd2/C18QTL4 upstream of Tcof1/C18QTL3 reveals novel mechanistic insights into BP modulations. Their discovery might yield innovative therapeutic targets and diagnostic tools predicated on a novel BP cause and mechanism that is determined by a regulatory hierarchy. Optimizing the de-phosphorylation capability and its downstream target could be antihypertensive. The conceptual paradigm of an order and regulatory hierarchy may help unravel genetic and molecular relationships among certain human BP QTLs.


Subject(s)
Blood Pressure/genetics , Hypertension/genetics , Nuclear Proteins/genetics , Phosphoproteins/genetics , Proteins/genetics , Animals , Epistasis, Genetic , Gene Expression Regulation , Humans , Hypertension/physiopathology , Male , Quantitative Trait Loci , Rats , Rats, Inbred Dahl , Rats, Inbred Lew , Signal Transduction/genetics
11.
Circ Cardiovasc Genet ; 8(4): 610-7, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25963546

ABSTRACT

BACKGROUND: Genetics of high blood pressure (BP) has revealed causes of hypertension. The cause of normotension, however, is poorly understood. Inbred Lewis rats sustain normotension despite a genetic push in altering BP. It was unknown whether this rigid resistance to BP changes is because of an insufficient hypertensive impact from limited alleles of quantitative trait loci (QTLs) or because of an existence of a master control superseding the combined strength of hypertensive QTL alleles. METHODS AND RESULTS: Currently, BP-elevating QTL alleles from hypertensive Dahl salt-sensitive rats (DSS) replaced those of Lewis on chromosomes 7, 8, 10, and 17 on the Lewis background. These hypertensive QTL alleles were then merged to systematically achieve multiple combinations. Results showed that there was no quantitative correlation between BP variations and the number of hypertensive QTL alleles, and that BP was only slightly elevated from a combined force of normotensive alleles from 7 QTLs. Thus, a genetic factor aside from the known QTLs seemed to be at play in preserving normotension and act as a hypertension suppressor. A follow-up study using consecutive backcrosses from Dahl salt-sensitive rats and Lewis identified a chromosome segment where a hypertension suppressor might reside. CONCLUSIONS: Our results provide the first evidence that normotension is not enacted via a numeric advantage of BP-lowering QTL alleles, and instead can be achieved by a particular genetic component actively suppressing hypertensive QTL alleles. The identification of this hypertension suppressor could result in formulating unique diagnostic and therapeutic targets, and above all, preventive measures against essential hypertension.


Subject(s)
Blood Pressure/genetics , Homeostasis/genetics , Hypertension/genetics , Quantitative Trait Loci/genetics , Alleles , Animals , Blood Pressure/physiology , Chromosome Mapping , Chromosomes, Mammalian/genetics , Genetic Phenomena , Genetic Predisposition to Disease/genetics , Homeostasis/physiology , Hypertension/physiopathology , Rats, Inbred Dahl , Rats, Inbred Lew
12.
J Hypertens ; 33(4): 669-80; discussion 680, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25915868

ABSTRACT

Essential hypertension is one of the most common disorders that underpin significant morbidity and mortality; however, underlying mechanisms remain elusive that either dictate the actions of individual quantitative trait loci (QTLs) or engineer the overall genetic architecture from them. Recent experimental evidence has unveiled that the genetic architecture determining blood pressure (BP) is assembled from QTL-building blocks by epistasis into regulatory hierarchies. BP, a polygenic and quantitative trait, is homeostasized via pathways participated by Mendelian constituents that operate distantly from end-phase physiological genes. Epistasis genetics performed in the current article has mechanistically unravelled the order and regulatory relationships between certain BP QTLs, and is the first study ever conducted in a mammalian system in analysing a complex trait. The elucidation of the sequence of event and regulatory hierarchies of QTL actions in these pathways will facilitate mechanism-based diagnoses and cause-driven treatments for essential hypertension.


Subject(s)
Blood Pressure/genetics , Hypertension/genetics , Multifactorial Inheritance , Animals , Disease Models, Animal , Essential Hypertension , Humans , Phenotype , Quantitative Trait Loci , Rats , Rats, Inbred Dahl
13.
J Hypertens ; 33(1): 3-13, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25380161

ABSTRACT

Heart failure accounts for a significant portion of heart diseases. Molecular mechanisms gradually emerge that participate in pathways leading to left ventricular dysfunction in common systolic heart failure (SHF) and diastolic heart failure (DHF). A human genome-wide association study (GWAS) identified two markers for SHF and no GWAS on DHF has been documented. However, genetic analyses in rat models of SHF and DHF have begun to unravel the genetic components known as quantitative trait loci (QTLs) initiating systolic and diastolic function. A QTL for systolic function was detected and the gene responsible for it is identified to be that encoding the soluble epoxide hydrolase. Diastolic function is determined by multiple QTLs and the Ccl2/monocyte chemotactic protein gene is the strongest candidate. An amelioration on diastolic dysfunction is merely transient from changing such a single QTL accompanied by a blood pressure reduction. A long-term protection can be achieved only via combining alleles of several QTLs. Thus, distinct genes in synergy are involved in physiological mechanisms durably ameliorating or reversing diastolic dysfunction. These data lay the foundation for identifying causal genes responsible for individual diastolic function QTLs and the essential combination of them to attain a permanent protection against diastolic dysfunction, and consequently will facilitate the elucidation of pathophysiological mechanisms underlying hypertensive diastolic dysfunction. Novel pathways triggering systolic and diastolic dysfunction have emerged that will likely provide new diagnostic tools, innovative therapeutic targets and strategies in reducing, curing and even reversing SHF and DHF.


Subject(s)
Heart Failure, Diastolic/genetics , Heart Failure, Systolic/genetics , Animals , Chemokine CCL2/genetics , Disease Models, Animal , Epoxide Hydrolases/genetics , Genetic Markers/genetics , Genome-Wide Association Study , Heart Failure, Diastolic/complications , Heart Failure, Systolic/complications , Humans , Quantitative Trait Loci , Rats , Ventricular Dysfunction, Left/etiology
15.
J Hypertens ; 31(12): 2329-36, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24220586

ABSTRACT

Heart failure explains a large portion of heart diseases. Molecular mechanisms determining cardiac function, by inference dysfunction in heart failure, are incompletely understood, especially in the common (or congestive) systolic (SHF) and diastolic heart failure (DHF). Limited genome-wide association studies (GWASs) in humans are reported on SHF and no GWAS has been performed on DHF. Genetic analyses in a rodent model of true DHF, Dahl salt-sensitive (DSS) rats, have begun to unravel the genetic components determining diastolic function. Diastolic dysfunction of DSS rats can be ameliorated or even normalized by distinct quantitative trait loci (QTLs), designated as diastolic function/blood pressure QTLs (DF/BP QTLs), which also affect blood pressure (BP). However, an improvement in diastolic dysfunction is merely transitory from a single DF/BP QTL, despite a permanent lowering of BP. A long-term protection against diastolic dysfunction can be realized only through combining specific DF/BP QTLs. Moreover, the worsening diastolic dysfunction with age can also be reversed in a different combination of DF/BP QTLs. Thus, distinct genes in combinations must be involved in the physiological mechanisms ameliorating or reversing diastolic dysfunction. As not all the QTLs that influence BP can affect diastolic function, it is not BP reduction itself that restores diastolic function, but rather specific genes that are uniquely integrated into the pathways of blood pressure homeostasis as well as diastolic function. Thus, the elucidation of pathophysiological mechanisms causal to hypertensive diastolic dysfunction will not only provide new diagnostic tools, but also novel therapeutic targets and strategies in reducing, curing, and even reversing DHF.


Subject(s)
Heart Failure, Diastolic/genetics , Animals , Blood Pressure/genetics , Disease Models, Animal , Genome-Wide Association Study , Heart Failure, Diastolic/physiopathology , Humans , Quantitative Trait Loci , Rats , Rats, Inbred Dahl
16.
Hum Mol Genet ; 22(22): 4451-9, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-23814039

ABSTRACT

Hypertension, the most frequently diagnosed clinical condition world-wide, predisposes individuals to morbidity and mortality, yet its underlying pathological etiologies are poorly understood. So far, a large number of quantitative trait loci (QTLs) have been identified in both humans and animal models, but how they function together in determining overall blood pressure (BP) in physiological settings is unknown. Here, we systematically and comprehensively performed pair-wise comparisons of individual QTLs to create a global picture of their functionality in an inbred rat model. Rather than each of numerous QTLs contributing to infinitesimal BP increments, a modularized pattern arises: two epistatic 'blocks' constitute basic functional 'units' for nearly all QTLs, designated as epistatic module 1 (EM1) and EM2. This modularization dictates the magnitude and scope of BP effects. Any EM1 member can contribute to BP additively to that of EM2, but not to those of the same module. Members of each EM display epistatic hierarchy, which seems to reflect a related functional pathway. Rat homologues of 11 human BP QTLs belong to either EM1 or EM2. Unique insights emerge into the novel genetic mechanism and hierarchy determining BP in the Dahl salt-sensitive SS/Jr (DSS) rat model that implicate a portion of human QTLs. Elucidating the pathways underlying EM1 and EM2 may reveal the genetic regulation of BP.


Subject(s)
Blood Pressure/genetics , Epistasis, Genetic , Homeostasis/genetics , Quantitative Trait Loci , Animals , Animals, Congenic , Disease Models, Animal , Gene Expression Regulation , Humans , Hypertension/genetics , Hypertension/physiopathology , Rats , Rats, Inbred Dahl , Rats, Inbred Lew
17.
Can J Cardiol ; 29(10): 1302-9, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23773896

ABSTRACT

BACKGROUND: Diastolic dysfunction often precedes the onset of diastolic heart failure. We previously demonstrated that diastolic dysfunction and left ventricular hypertrophy (LVH) in Dahl salt-sensitive rats can be ameliorated by quantitative trait loci (QTLs). METHODS: We analyzed cardiac phenotypes of 2 "single" congenic strains, C10S.L33 and C10S.L28, by echocardiography, in which a specific Dahl salt-sensitive rat chromosome segment was replaced by its Lewis homologue. C10S.L33 improves diastolic function (DF) and LVH only in rats aged 10 weeks, not aged 15 weeks. C10S.L28 alleviated LVH, but not diastolic dysfunction. Thus, the QTLs captured by C10S.L33 and C10S.L28 are designated as DF/LVH C10QTL7 and LVH C10QTL4, respectively. We then combined multiple single strains to form 2 congenic combinations. One of the 2 congenic combinations included the chromosome segments covered by C10S.L33 and C10S.L28. RESULTS: Diastolic dysfunction was either completely or partially reversed by 15 weeks in the 2 congenic combinations. LVH was permanently improved from 10 to 15 weeks. CONCLUSIONS: Distinct QTLs exist that regulate diastolic function and/or LVH in the short term when acting alone, but durably when combined. The Ccl2 chemokine (C-C motif) ligand 1 (Ccl2) gene is the prime candidate for DF/LVH C10QTL7, owing to a nonconserved coding mutation. Schlafen genes are candidates for LVH C10QTL4. Since CCL2 and Schlafens are not known for influencing diastolic function and left ventricular mass, novel long-term strategies of prognosis, diagnosis, and therapy for diastolic heart failure and LVH appear from this work.


Subject(s)
Chromosome Mapping/methods , Genetic Therapy/methods , Hypertrophy, Left Ventricular/therapy , Quantitative Trait Loci , Ventricular Dysfunction, Left/therapy , Ventricular Function, Left/genetics , Animals , Animals, Congenic , Blood Pressure , Diastole , Disease Models, Animal , Echocardiography , Hypertrophy, Left Ventricular/complications , Hypertrophy, Left Ventricular/genetics , Male , Phenotype , Rats , Rats, Inbred Dahl , Ventricular Dysfunction, Left/etiology , Ventricular Dysfunction, Left/genetics
18.
J Hypertens ; 31(5): 927-35, 2013 May.
Article in English | MEDLINE | ID: mdl-23442991

ABSTRACT

OBJECTIVES: Diastolic dysfunction often represents the onset of diastolic heart failure (DHF). We previously showed in principle that diastolic function in Dahl salt-sensitive rats (DSS) can be genetically determined by quantitative trait loci (QTLs) that also modulate blood pressure (BP). METHODS: We analyzed cardiac phenotypes of four 'single' congenic strains by echocardiography, in which a specific DSS chromosome segment was replaced by its normotensive Lewis homologue. RESULTS: Two of the strains permanently lowered BP, and but attenuated diastolic dysfunction only in rats at 10 weeks of age, not at 15 weeks fed on a 2% NaCl diet starting from 8 weeks of age. We then combined multiple QTLs by integrating several 'single' congenic strains. As a result, BP was greatly reduced. Cardiac dysfunction and LV hypertrophy were continuously improved from 10 to 15 weeks, although the degree and timing of the improvement varied among different congenic combinations. CONCLUSION: Distinct QTLs exist that simultaneously modulate BP and diastolic function. These QTLs, in combination, synergistically lowered BP and permanently alleviated or reversed diastolic dysfunction. The genes that are contained in the congenic strains affecting diastolic function are not known for their specific influence on BP. Novel long-term strategies of prognosis, diagnosis and therapy for hypertensive DHF appear from this work.


Subject(s)
Blood Pressure/genetics , Diastole/genetics , Hypertension/physiopathology , Hypertrophy, Left Ventricular/genetics , Quantitative Trait Loci , Animals , Diastole/physiology , Dyneins/genetics , Male , Rats , Rats, Inbred Dahl
19.
J Hypertens ; 30(1): 81-6, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22124177

ABSTRACT

OBJECTIVES: The discovery of causative genes leading to hypertension in animal models can reveal new mechanistic insights into blood pressure (BP) regulations. Previously, we isolated segments that harbor BP quantitative trait loci (QTLs) on rat chromosome 10 as defined by congenic strains made from crosses of inbred hypertensive Dahl salt-sensitive (DSS) and normotensive Lewis rats. The aim of the current study was to identify hypertension-causing genes for each QTL. METHODS: Molecular analysis was performed. RESULTS: A systematic and comprehensive molecular analysis divulged particular genes that carry nonconserved mutations. Specifically, the proline rich 11 gene is likely responsible for C10QTL5. C10QTL1 is one of five genes, namely Benzodiazepine receptor associated protein 1, Loc689764, myotubularin related protein 4, protein phosphatase 1E, PP2C domain containing and ring finger protein 43. Loc100363423 with no known function is a candidate for C10QTL3. The ATP-binding cassette, subfamily A (ABC1), member 8a gene is probably responsible for C10QTL2. CONCLUSIONS: Primary genes initiating polygenic hypertension are those not known to be involved in BP modulation. Novel pathways towards BP homeostasis appear to underlie the functionality of C10QTL5, C10QTL1 and C10QTL3 and C10QTL2. Moreover, these genes may become innovative targets for the diagnosis and therapeutics of essential hypertension.


Subject(s)
Genetic Predisposition to Disease , Hypertension/genetics , Animals , Base Sequence , Blood Pressure , DNA Primers , Homeostasis , Humans , Hypertension/physiopathology , Mutation , Quantitative Trait Loci , Rats , Rats, Inbred Dahl , Rats, Inbred Lew , Reverse Transcriptase Polymerase Chain Reaction
20.
J Hypertens ; 29(7): 1320-6, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21602714

ABSTRACT

OBJECTIVES: The interval harboring a quantitative trait locus for blood pressure (BP), C18QTL3, contains ß-2 adrenergic receptor (Adrb2) and neural precursor cell expressed, developmentally downregulated 4-like (Nedd4l) genes. None of the other genes in the C18QTL3-residing interval is known to affect BP. The identification of C18QTL3 might uncover a brand new gene that could prosper into a novel diagnostic and/or therapeutic target for essential hypertension, if neither Adrb2 nor Nedd4l could be upheld as candidate genes. METHODS: Congenic fine resolution was combined with gene analyses. RESULTS: The gene encoding α-kinase 2 (Alpk2) contains a three base-pair deletion and multiple nonconserved mutations in its coding region in Dahl salt-sensitive (DSS) rats. In contrast, the gastrin-releasing peptide gene (Grp) possesses two nonconserved mutations, designated as single nucleotide polymorphisms 1 and 2 (i.e. SNP1 and SNP2), but could not be supported as a candidate gene because the C18S.L14 congenic strain displayed a homozygous DSS genotype at both SNP1 and SNP2. Furthermore, Adrb2 and Nedd4l could not account for the BP-diminishing effect of Lewis alleles in C18S.L14, as their DSS alleles bear functionally identical domains as those of Lewis, and no evidence of differential expression and splicing was evident. No significant nucleotide variations were found in 13 other genes closely linked to Alpk2. CONCLUSION: Alpk2 emerged as a strong candidate gene for C18QTL3. The present study is the first to implicate Alpk2 in the genetics of polygenic hypertension and paves the way for novel gene discovery.


Subject(s)
Hypertension/genetics , Phosphotransferases/genetics , Animals , Exons , Genetic Predisposition to Disease , Introns , Mutation , Quantitative Trait Loci , Rats , Rats, Inbred Dahl
SELECTION OF CITATIONS
SEARCH DETAIL
...